
CSCI 4155/6505: Machine Learning
with Robotics

Thomas P. Trappenberg
Dalhousie University

Acknowledgements

These lecture notes have been inspired by several great sources, which I commend
as further readings. In particular, Andrew Ng from Stanford University has several
lecture notes on Machine Learning (CS229) and Artificial Intelligence: Principles and
Techniques (CS221). His lecture notes and video links to his lectures are available
on his web site (http://robotics.stanford.edu/∼ang). Excellent book on the
theory of machine learning are Introduction to Machine Learning by Ethem Alpaydin,
2nd edition, MIT Press 2010, and Pattern Recognition and Machine Learning by
Christopher Bishop, Springer 2006. A wonderful book on Robotics with a focus of
Bayesian models is Probabilistic Robotics by S. Thrun, W. Burgard, and D. Fox, MIT
Press 2005, and the standard book on RL is Reinforcement Learning: An Introduction

by Richard Sutton and Andrew Barto, MIT press, 1998. The standard book for AI,
Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig, 2nd
edition, Prentice Hall, 2003, does also include some chapters on Machine Learning.

Several people have contributed considerably to this lecture notes. In particu-
lar, Leah Brown and Ian Graven have created most of the original Lego Mindstorm
implementations and tutorials, Paul Hollensen and Patrick Connor made several con-
tributions, and Chris Maxwell helped with some implementation issues.

Contents

I INTRODUCTION

1 Introduction 3
1.1 Some history of AI and machine learning 3
1.2 Machine Learning and the probabilistic framework 5
1.3 Robotics and control theory 6
1.4 Sensing and acting 7

II BACKGROUND

2 Mathematical tools 13
2.1 Probability theory 13
2.2 Vector and matrix notations 25
2.3 Basic calculus 28

3 Programming with Matlab 30
3.1 The MATLAB programming environment 30
3.2 Main programming constructs 31
3.3 Creating MATLAB programs 37
3.4 Graphics 38
3.5 A first project: modelling the world 40
3.6 Alternative programming environments: Octave and

Scilab 42

4 Basic robotics with LEGO NXT 45
4.1 Building a basic robot with LEGO NXT 45
4.2 Basic MATLAB NXT toolbox commands 49
4.3 First examples 54
4.4 Classical control theory 56
4.5 Adaptive Controle 59
4.6 Configuration space 61
4.7 Planning as search 64

III SUPERVISED LEARNING

5 Regression and maximum likelihood 69
5.1 Regression of noisy data 69

Contentsviii |

5.2 Probabilistic models and maximum likelihood 70
5.3 Maximum a posteriori estimates 73
5.4 Minimization procedures 74
5.5 Gradient Descent 75
5.6 Non-linear regression and the bias-variance tradeoff 80

6 Classification 84
6.1 Logistic regression 84
6.2 Generative models 86
6.3 Discriminant analysis 87
6.4 Naive Bayes 90

7 Graphical models 92
7.1 Causal models 92
7.2 Bayes Net toolbox 94
7.3 Temporal Bayesian networks: Markov Chains and

Bayes filters 96
7.4 Application and generalization: Localisation example 99

8 General learning machines 100
8.1 The Perceptron 100
8.2 Multilayer perceptron (MLP) 102
8.3 LIP regression 105
8.4 Support Vector Machines (SVM) 106
8.5 SV-Regression and implementation 114
8.6 Supervised Line-following 116

IV REINFORCEMENT LEARNING

9 Markov Decision Process 121
9.1 Learning from reward and the credit assignment prob-

lem 121
9.2 The Markov Decision Process 122
9.3 The Bellman equation 125

10 Temporal Difference learning and POMDP 131
10.1 Temporal Difference learning 131
10.2 Temporal difference methods for optimal control 132
10.3 Robot exercise with reinforcement learning 133
10.4 POMDP 135
10.5 Model-based RL 135

| ixContents

V UNSUPERVISED LEARNING

11 Unsupervised learning 139
11.1 K-means clustering 139
11.2 Mixture of Gaussian and the EM algorithm 141
11.3 The Boltzmann machine 145

Part I

Introduction

1 Introduction

Both, machine learning and robotics have been important topics in the area of artificial
intelligence. This introductory chapter outlines some history of these areas before
outlining the direction that have recently advanced these areas considerably. We will
also outline some basic robotics terminology and technology as background to the
main machine learning focus of this course. The following x chapters reviews some
additional material that we will use later, including probability theory, programming
with Matlab, and how to use the Lego Mindstorm NXT.

1.1 Some history of AI and machine learning

Artificial Intelligence(AI) has many sub-discipline such as knowledge representation,
expert systems, search, etc. This course will focus on how machines can learn to
improve their performance or learn how to solve problems. Machine learning is now
widely respected scientific area with a growing number of applications. Indeed, major
breakthroughs in autonomous robotics, new types of consumer electronics, and new
approaches to information processing have recently been enabled by new machine
learning advancements.

The history of AI is tightly interwoven with the history of machine learning.
For example, Arthur Samuel’s checkers program from the 1950s, which has been
celebrated as an early AI hallmark, was able to learn from experience and thereby
was able to outperform its creator. Basic Neural Networks, such as Bernhard Widrow’s
ADALINE (1959), Karl Steinbuch’s Lernmatrix (around 1960), and Frank Rosenblatt’s
Perceptron (late 1960s), have sparked the imaginations of researcher about brain-
like information processing systems. And Richard Bellman’s Dynamic Programming
(1953) has created a lot of excitement during the 1950s and 60s, and is now considered
one of the foundations reinforcement learning.

Biological systems of often been and inspiration for understanding learning systems
and visa versa. Donald Hebb’s book The Organization of Behavior (1943) has been
very influential not only in the cognitive science community, but has been marvelled
in the early computer science community. While Hebb speculated how self-organizing
mechanisms can enable human behavior, it was Eduardo Caianiello’s influential paper
Outline of a theory of thought-processes and thinking machines (1961) who quantified
these ideas into two important equations, the neuronic equation, describing how the
functional elements of the networks behave, and the memnonic equation that describe
how these systems learn. This opened the doors to more theoretical investigations. But
such investigations came to a sudden halt after Marvin Minsky and Seymore Papert
published their book Perceptrons in 1969 with a proof that simple perceptrons can
not learn all problems. At this time, likely somewhat triggered by the vacuum in AI

Introduction4 |

research by the departure of learning networks, mainstream AI shifted towards expert
systems.

Fig. 1.1 Some AI pioneers AI.From top left to bottom right: Alan Turing, Frank Rosenblatt, Geoffrey
Hinton, Arthur Lee Samuel, Richard Bellman, Judea Pearl.

Neural Networks became again popular in the mid 1980 after the backpropaga-
tion algorithms was popularized by David Rumelhart, Geoffrey Hinton and Ronald
Williams (1986). There was a brief period of extreme hype with claims that neural net-
works can now forecast the stock-market and how these learning systems will quickly
become little brains. The hype backslashed somewhat. Neural Networks predictive
power in scientific explanations became questions as they seem to always fit any data,
and early claims of the future progress has not substantiated. But the understanding
of both these problems, which are related to generalizability and scalability have
matured this field considerably since.

The recent progress was made possible through several factors, but likely most
of all through a more rigorous mathematical formulations and the embedding of such
methods with stochastic theories. In particular, important learning theories become
widely known and developed further after Vladimir Vapnik published his book The

Nature of Statistical Learning Theory in 1995. And more generally, Bayesian methods
have clarified and transformed the field, with many important advancements outlined
in this book (Judea Pearl, 1985).

| 5Machine Learning and the probabilistic framework

1.2 Machine Learning and the probabilistic framework

Traditional AI provides many useful approaches for solving specific problems. For
example, search algorithms can be used to navigate mazes or to find scheduling
solutions. And expert systems can manage a large data-base of expert knowledge that
can be used to argue (infer) about specific situations. While such strategies might
be well suited for specific applications, learning systems are usually more general
and can be applied to situations for which closed solutions are not known. Also, a
major challenge in many AI applications has been that systems change over time and
that systems encounter situations for which they were not designed. Thus, some form
of adaptation to changing situations and generalizations to unseen environments are
important for may systems for which AI is being considered. While many AI systems
have adaptive components, we are specifically concentrating on the theory of learning
machines in this course.

Our aim of learning machines is to learn from the environment, either through
instructions, by reward or punishment, or just by exploring the environment and learn-
ing about typical objects or spatio-temporal relations. For the systematic discussion
of learning systems it is useful to distinguish three types of learning circumstances,
namely supervised learning, unsupervised learning, and reinforcement learning. Su-
pervised learning is characterized by using explicit examples with labels that the
system should use to learn to predict labels of previously unseen data. The training la-
bels can be seen as being supplied by a teacher who tells the system exactly the desired
answer. Reinforcement learning is somewhat similar in that the system receives some
feedback from the environment, but this feedback is only reward or punishment for
previously taken actions and thus typically delay in time. The goal of reinforcement
learning is to discover the action, or a sequence of actions, which maximize reward
over time. Finally, the aim of unsupervised learning is to find useful representations
of data based on regularities of data without labels. Smart representation of data is
often the key of smart solutions, and this type of learning is often more applicable
since no labels are required. While it is useful to distinguish such classical learning
systems, they can also augment each other. Our ultimate goal is to model the world
and to use such models to make ‘smart’ decisions in order to maximize reward.

Learning systems address can help to solve problems for which more direct solu-
tions are not known, another common problem in AI applications is that systems are
generally unreliable and that environments are uncertain. For example, a program
might read data in a specific format, but some user might supply corrupted files. In-
deed, productions software is often lengthy only to consider all kind of situations that
could occur, and we now realize that considering all possibilities is often impossible.
Unreliable inputs is very apparent in robotics where sensors are often noisy of have
severe limitations. Also, the state of a system might be unclear due to limited data or
the inability to process data sufficiently in time due to limited resources.

Major progress in many AI areas, in particular in robotics and machine learning,
has been made by using concepts of (Bayesian) probability theory. This language of
probability theory is appropriate since it acknowledges the fundamental limitations we
have in real world applications (such as limited computational researches or inaccurate
sensors). The language of probability theory has certainly helped to unify much of
related areas and improved communication between researchers. Furthermore, we will

Introduction6 |

see that the representation of uncertain states as a probabilistic map will be very useful.
Probability theory will also provide us with the solution for a basic computational need,
that of combining prior knowledge with new evidence.

1.3 Robotics and control theory
In this course, we will demonstrate many of the discussions, algorithms and associated
problems with the help of computer simulations and robots. Computer simulations
are a great way to experiment with many of the ideas, but physical implementations
have often the advantage to show more clearly the challenges in real applications.
So our emphasis in this book is using fairly general machine learning techniques to
solve Robotics tasks even though more direct engineering solutions might be possible.
While this is not always the way robots are controlled today, it is also true that machine
learning methods become increasingly important in robotics.

So, what is robotics?
"Robotics is the science of perceiving and manipulating the physical world
through computer-controlled devices"1.

We use the word robot or agent to describe a system which interacts actively
with the environment through sensors and actuators. The ‘brain’ of the robot is often
called the controller. An agent can be implemented in software or hardware, and we
often use the term robot more specifically for a hardware implementation of an agent,
though this does generally include software components. Active interactions means
that the robot’s position in the environment or the environment itself changes though
the action of the robot. Mobile robots are a good example of this and are mainly used
in the examples of this course. In contrast, a vision system that uses a digital camera
to recognize objects is not a robot in our definition.

The word ‘robot’ is sometimes credited to Isaac Asimov (1941) or to the Czech
writer Karel Čapek (1921). The dream of having machines that can act more au-
tonomously for human benefits is certainly older, and the Unimate (1961) is often
referred to as the first industrial robot. Robots are now invaluable in manufacturing,
and research is ongoing to make robots more autonomous and to make those machines
more robust and able to work in hostile environments. Robotics has many components,
including mechanical and electrical engineering, computer or machine vision, and even
behavioral studies have become prominent in this field.

Robots are intended to make useful actions to achieve some goals, so robotics is
all about finding and safely executing those appropriate actions. This area is generally
called control theory. A functioning robotics system needs to control on many different
levels, controlling the low level functions such as the proper rotation of motors up to
ensuring that high level tasks are accomplished. We will formalize some control theory
in a later chapter but it is useful to get some of the larger picture build the basis of
current robotics systems.

There are two extreme approaches to robotics control, the deliberative approach
and the reactive approach. In the deliberative approach we gather all available infor-
mation plan action carefully based on all available actions. Such a planning process

1Probabilistic Robotics, Sebastian Thrun, Wolfram Burgard, and Dieter Fox, MIT press 2006

| 7Sensing and acting

usually takes time and is based on searching through all available alternatives. The ad-
vantage of such systems is that they usually provide superior actions, but the search for
such actions can be time consuming and might thus not be applicable in all situations.
Also, deliberative systems require a large amount of knowledge about the environment
that might not be available in certain applications.

Identify Object

Monitor Changes

Explore

Wander

Avoid ObjectsSensory Input Actuator Output

Fig. 1.2 An example of an subsumption architecture. From Maja J. Matari c, The Robotocs

Primer, MIT Press 2007

Reactive systems have a more direct approach of translating sensory information
in actions. For example, a typical rule in such systems might be to turn the robot
when a proximity sensor senses some objects in its path. To generate more complex
behavior, such reactive systems typically build response systems by combining lower
level control systems with higher level functions. A very successful approach has there
been the subsumption architecture, which is illustrated in Figure 1.2. Such systems
are typically build bottom-up in that more complex functions use lower-level functions
to achieve more complex tasks. The higher level modules can chose to use the lower
level function or can inhibit them if necessary.

1.4 Sensing and acting

As stressed above, robots act in the physical world through actuators based on sensory
information. So you might be interested to briefly review some sensing and acting
technology.

Actuators are mainly motors to move the robot around (locomotion) or to move
limbs to crasp objects (manipulation). Motors for continuous rotations are typically
DC (direct current) motors, but in robotics we often need to move a limb to a specific
location. Motors that can turn to a specific position are called servo motors. Such
motors are based on greas and position sensors together with some electronics for
control or the desired rotation angle. Figure 1.3.

Sensors come in many varieties. Table 1.1 gives some examples of what kind of
sensing technology is often used to sense (measure) certain physical properties. The
basic Lego sensors used in this course are also shown in Figure 1.3. In addition we
will use a web camera, and for special projects we could also use the Kinect ensors

Introduction8 |

Servo motor

Ultrasonic sensor

Light sensor
MicrophoneTouch sensor

Fig. 1.3 The actuator and sensors of the basic Lego Mindstorm NXT robotics set.

Table 1.1 Some sensors and the information they measure. From From Maja J. Matari c, The

Robotocs Primer, MIT Press 2007

Physical Property Sensing Technology
Contact bump, switch
Distance ultrasound, radar, infra red
Light level photocells, cameras
Sound levels microphones
Strain strain gauges
Rotation encoders, potentiometers
Acceleration accelerometers, gyroscopes
Magnetism compass
Smell chemical sensors
Temperature thermal, infra red
Inclination inclinometers, gyroscopes
Pressure pressure gauge
Altitude altimeter

from Microsoft and special Lego sensors including a GPS and an accelerometer (see
Figure 1.4.

| 9Sensing and acting

Fig. 1.4 Some additional sensors that we could use such as the Microsft Kinect and a GPS for
the Lego NXT.

Part II

Background

2 Mathematical tools

2.1 Probability theory
As outlined in Chapter 1, a major milestone for the modern approach to machine
learning is to acknowledge our limited knowledge about the world and the unreliability
of sensors and actuators. It is then only natural to consider quantities in our approaches
as random variables. While a regular variable, once set, has only one specific value, a
random variable will have different values every time we ‘look’ at it (draw an example
from the distributions). Just think about a light sensor. We might think that an ideal light
sensor will give us only one reading while holding it to a specific surface, but since the
peripheral light conditions change, the characteristics of the internal electronic might
change due to changing temperatures, or since we move the sensor unintentionally
away from the surface, it is more than likely that we get different readings over time.
Therefore, even internal variables that have to be estimated from sensors, such as the
state of the system, is fundamentally a random variable.

A common misconception about randomness is that one can not predict values of
random values. Some values might be more likely than others, and, while we might
not be able to predict a specific value when drawing a random number, it is possible
to say something like how often a certain number will appear when drawing many
examples. We might even be able to state how confident we are with this number,
or, in other words, how variable these predictions are. The complete knowledge of a
random variable, that is, how likely each value is for a random variable x, is captured
by the probability density function pdf(x). We discuss some specific examples of
pdfs below. In these examples we assume that we know the pdf, but in may practical
applications we must estimate this function. Indeed, estimation of pdfs is at the heart
if not the central tasks of machine learning. If we would know the ‘world pdf’, the
probability function of all possible events in the world, then we could predict as much
as possible in this world.

Most of the systems discussed in this course are stochastic models to capture
the uncertainties in the world. Stochastic models are models with random variables,
and it is therefore useful to remind ourselves about the properties of such variables.
This chapter is a refresher on concepts in probability theory. Note that we are mainly
interested in the language of probability theory rather than statistics, which is more
concerned with hypothesis testing and related procedures.

2.1.1 Random numbers and their probability (density) function

Probability theory is the theory of random numbers. We denoted such numbers by
capital letters to distinguish them from regular numbers written in lower case. A
random variable, X , is a quantity that can have different values each time the variable
is inspected, such as in measurements in experiments. This is fundamentally different

Mathematical tools14 |

to a regular variable, x, which does not change its value once it is assigned. A random
number is thus a new mathematical concept, not included in the regular mathematics of
numbers. A specific value of a random number is still meaningful as it might influence
specific processes in a deterministic way. However, since a random number can change
every time it is inspected, it is also useful to describe more general properties when
drawing examples many times. The frequency with which numbers can occur is then
the most useful quantity to take into account. This frequency is captured by the
mathematical construct of a probability. Note that there is often a debate if random
numbers should be defines solely on the basis of a frequency measurement, or if there
they should be treated as a special kind of objects. This philosophical debate between
‘Frequentists’ and ‘Bayesians’ is of minor importance for our applications.

We can formalize the idea of expressing probabilities of drawing specific specific
values for random variable with some compact notations. We speak of a discrete
random variable in the case of discrete numbers for the possible values of a random
number. A continuous random variable is a random variable that has possible values
in a continuous set of numbers. There is, in principle, not much difference between
these two kinds of random variables, except that the mathematical formulation has
to be slightly different to be mathematically correct. For example, the probability
function,

PX(x) = P (X = x) (2.1)

describes the frequency with which each possible value x of a discrete variable X

occurs. Note that x is a regular variable, not a random variable. The value of PX(x)
gives the fraction of the times we get a value x for the random variable X if we
draw many examples of the random variable.2 From this definition it follows that
the frequency of having any of the possible values is equal to one, which is the
normalization condition

�

x

PX(x) = 1. (2.2)

In the case of continuous random numbers we have an infinite number of possible
values x so that the fraction for each number becomes infinitesimally small. It is then
appropriate to write the probability distribution function as PX(x) = pX(x)dx, where
pX(x) is the probability density function (pdf). The sum in eqn 2.2 then becomes an
integral, and normalization condition for a continuous random variable is

�

x
pX(x)dx = 1. (2.3)

We will formulate the rest of this section in terms of continuous random variables.
The corresponding formulas for discrete random variables can easily be deduced by
replacing the integrals over the pdf with sums over the probability function. It is also
possible to use the δ-function, outlined in Appendix 2.2, to write discrete random
processes in a continuous form.

2Probabilities are sometimes written as a percentage, but we will stick to the fractional notation.

| 15Probability theory

2.1.2 Moments: mean, variance, etc.

In the following we only consider independent random values that are drawn from
identical pdfs, often labeled as iid (independent and identically distributed) data. That
is, we do not consider cases where there is a different probabilities of getting certain
numbers when having a specific number in a previous trial. The static probability
density function describes, then, all we can know about the corresponding random
variable.

Let us consider the arbitrary pdf, pX(x), with the following graph:

µ x

p(x)

Such a distribution is called multimodal because it has several peaks. Since this is a
pdf, the area under this curve must be equal to one, as stated in eqn 2.3. It would be
useful to have this function parameterized in an analytical format. Most pdfs have to
be approximated from experiments, and a common method is then to fit a function to
the data. We can also view this approximation as a learning problem, that is, how can
we learn the pdf from data? We will return to this question later.

Finding a precise form of a pdf is difficult, and we became thus used to describing
random variables with a small set of numbers that are meant to capture some properties.
For example, we might ask what the most frequent value is when drawing many
examples. This number is given by the largest peak value of the distribution. It is often
more useful to know something about the average value itself when drawing many
examples. A common quantity to know is thus the expected arithmetic average of
those numbers, which is called the mean, expected value, or expectation value of the
distribution, defined by

µ =

� ∞

−∞
xp(x)dx. (2.4)

This formula formalizes the calculation of adding all the different numbers together
with their frequency.

A careful reader might have noticed a little oddity in our discussion. On the one
hand we are saying that we want to characterize random variables through some simple
measurements because we do not know the pdf, yet the last formula uses the pdf p(x)
that we usually don’t know. To solve this apparent oddity we need to be more careful
and talk about the true underlying functions and the estimation of such functions.
If we would know the pdf that governs the random variable X , then equation 2.4 is
the definition of the mean. However, in most applications we do not know the pdf, but
we can define an approximation of the mean from measurements. For example, if we
measure the frequency pi of values in certain intervals around values xi, then we can
estimate the true mean µ by

Mathematical tools16 |

µ̂ =
1

N

N�

i=1

xipi. (2.5)

It is a common practice to denote an estimate of a quantity by adding a hat symbol
to the quantity name. Also, not that we have use here a discretization procedure to
approximate random variable that can be continuous in the most general case. Also
note that we could enter here again the philosophical debate. Indeed, we have treated
the pdf as fundamental and described the arithmetic average like an estimation of
the mean. This might be viewed as Bayesian. However, we could also be pragmatic
and say that we only have a collection of measurements so that the numbers are the
‘real’ thing, and that pdfs are only a mathematical construct. We will continue with a
Bayesian description but note that this makes no difference at the end when using it in
specific applications.

The mean of a distribution is not the only interesting quantity that characterizes a
distribution. For example, we might want to ask what the median value is for which it
is equally likely to find a value lower or larger than this value. Furthermore, the spread
of the pdf around the mean is also very revealing as it gives us a sense of how spread
the values are. This spread is often characterized by the standard deviation (std), or its
square, which is called variance, σ2, and is defined as

σ
2 =

� ∞

−∞
(x− µ)2f(x)dx. (2.6)

This quantity is generally not enough to characterize the probability function uniquely;
this is only possible if we know all moments of a distribution, where the nth moment
about the mean is defined as

m
n =

� ∞

−∞
(x− µ)nf(x)dx. (2.7)

The variance is the second moment about the mean,

σ
2 =

� ∞

−∞
(x− µ)2f(x)dx. (2.8)

Higher moments specify further characteristics of distributions such as terms with
third-order exponents (lie a quantity called skewness) or fourth-oder (such as a quantity
called kurtosis). Moments higher than this have not been given explicit names. Knowing
all moments of a distribution is equivalent to knowing the distribution precisely, and
knowing a pdf is equivalent to knowing everything we could know about a random
variable.

In case the distribution function is not given, moments have to be estimated from
data. For example, the mean can be estimated from a sample of measurements by the
sample mean,

x̄ =
1

n

n�

i=1

xi, (2.9)

and the variance from the sample variance,

s
2
1 =

1

n

n�

i=1

(x̄− xi)
2
. (2.10)

| 17Probability theory

We will discuss later that these are the appropriate maximum likelihood estimates
of these parameters. Note that the sample mean is an unbiased estimate while the
sample variance is biased. A statistic is said to be biased if the mean of the sampling
distribution is not equal to the parameter that is intended to be estimated. It can be
shown that E(s21) = 1

nσ
2, and we can therefore adjust for the bias with a different

normalization. It is hence common to use the unbiased sample variance

s
2
2 =

1

n− 1

n�

i=1

(x̄− xi)
2
, (2.11)

as estimator of the variance.
Finally, it is good to realize that knowing all moments uniquely specifies a pdf. But

the reverse is also true, that is, and incomplete list of moments does not uniquely define
a pdf. Note that the all higher moments are zero for the Gaussian distributions, which
means that the mean and variance uniquely define the distribution. This is however not
the case for other distributions, and the usefulness of reporting these statistics can then
be questioned.

2.1.3 Examples of probability (density) functions

There is an infinite number of possible pdfs. However, some specific forms have been
very useful for describing some specific processes and have thus been given names.
The following are just some examples of discrete and several continuous distributions.
Most examples are discussed as one-dimensional distributions except the last example,
which is a higher dimensional distribution.

2.1.3.1 Bernoulli distribution
A Bernoulli random variable is a variable from an experiment that has two possible
outcomes: success with probability p; or failure, with probability (1− p).

Probability function:
P (success) = p;P (failure) = 1− p

mean: p
variance: p(1− p)

2.1.3.2 Multinomial distribution
This is the distribution of outcomes in n trials that have k possible outcomes. The
probability of each outcome is thereby pi.

Probability function:
P (xi) = n!

�k
i=1(p

xi
i /xi!)

mean: npi
variance: npi(1− pi)

An important example is the Binomial distribution (k = 2), which describes the the
number of successes in n Bernoulli trials with probability of success p. Note that the
binomial coefficient is defined as

Mathematical tools18 |
�
n

x

�
=

n!

x!(n− x)!
(2.12)

and is given by the MATLAB function nchoosek.

x

P(x)

np

Probability function:

P (x) =

�
n

x

�
px(1− p)n−x

mean: np
variance: np(1− p)

2.1.3.3 Uniform distribution
Equally distributed random numbers in the interval a ≤ x ≤ b. Pseudo-random
variables with this distribution are often generated by routines in many programming
languages.

x

p(x)

Probability density function:
p(x) = 1

b−a
mean: (a+ b)/2
variance: (b− a)2/12

2.1.3.4 Normal (Gaussian) distribution
Limit of the binomial distribution for a large number of trials. Depends on two pa-
rameters, the mean µ and the standard deviation σ. The importance of the normal
distribution stems from the central limit theorem outlined below.

µ

σ

x

p(x)

Probability density function:

p(x) = 1
σ
√
2π

e
−(x−µ)2

2σ2

mean: µ
variance: σ2

2.1.3.5 Chi-square distribution
The sum of the squares of normally distributed random numbers is chi-square dis-
tributed and depends on a parameter ν that is equal to the mean. Γ is the gamma
function included in MATLAB as gamma.

ν x

p(x)

Probability density function:
p(x) = x(ν−2)/2e−x/2

2ν/2Γ(ν/2)
mean: ν
variance: 2ν

| 19Probability theory

2.1.3.6 Multivariate Gaussian distribution
We will later consider density functions of a several random variables, x1, ..., xn. Such
density functions are functions in higher dimensions. An important example is the
multivariate Gaussian (or Normal) distribution given by

p(x1, ..., xn) = p(x) =
1

(
�
(2π))n

�
(det(Σ)

exp(−1

2
(x− µ)TΣ−1(x− µ)).

(2.13)
This is a straight forward generalization of the one-dimensional Gaussian distribution
mentioned before where the mean is now a vector, µ and the variance generalizes to
a covariance matrix, Σ = [Cov[Xi, Xj]]i=1,2,...,k;j=1,2,...,k which must be symmetric
and positive semi-definit. An example with mean µ = (1 2)T and covariance Σ =
(1 0.5; 0.5 1) is shown in Fig,2.1.

2.1.4 Cumulative probability (density) function and the Gaussian error
function

We have mainly discussed probabilities of single values as specified by the probability
(density) functions. However, in many cases we want to know the probabilities of
having values in a certain range. Indeed, the probability of a specific valuer of a
continuous random variable is actually infinitesimally small (nearly zero), and only
the probability of a range of values is finite and has a useful meaning of a probability.
This integrated version of a probability density function is the probability of having a
value x for the random variable X in the range of x1 ≤ x ≤ x2 and is given by

P (x1 ≤ X ≤ x2) =

� x2

x1

p(x)dx. (2.14)

Note that we have shortened the notation by replacing the notation PX(x1 ≤ X ≤ x2)
by P (x1 ≤ X ≤ x2) to simplify the following expressions. In the main text we often
need to calculate the probability that a normally (or Gaussian) distributed variable
has values between x1 = 0 and x2 = y. The probability of eqn 2.14 then becomes a
function of y. This defines the Gaussian error function

1√
2πσ

� y

0
e−

(x−µ)2

2σ2 dx =
1

2
erf(

y − µ√
2σ

). (2.15)

The name of this function comes from the fact that this integral often occurs when
calculating confidence intervals with Gaussian noise and is often abbreviated as erf .
This Gaussian error function for normally distributed variables (Gaussian distribution
with mean µ = 0 and variance σ = 1) is commonly tabulated in books on statistics.
Programming libraries also frequently include routines that return the values for spe-
cific arguments. In MATLAB this is implemented by the routine erf, and values for
the inverse of the error function are returned by the routine erfinv.

Another special case of eqn 2.14 is when x1 in the equation is equal to the lowest
possible value of the random variable (usually −∞). The integral in eqn 2.14 then

Mathematical tools20 |

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Fig. 2.1 Multivariate Gaussian with mean µ = (1 2)T and covariance Σ = (1 0.5; 0.5 1).

corresponds to the probability that a random variable has a value smaller than a certain
value, say y. This function of y is called the cumulative density function (cdf),3

P
cum(x < y) =

� y

−∞
p(x)dx, (2.16)

which we will utilize further below.

3Note that this is a probability function, not a density function.

| 21Probability theory

2.1.5 Functions of random variables and the central limit theorem

A function of a random variable X ,

Y = f(X), (2.17)

is also a random variable, Y , and we often need to know what the pdf of this new
random variable is. Calculating with functions of random variables is a bit different to
regular functions and some care has be given in such situations. Let us illustrate how
to do this with an example. Say we have an equally distributed random variable X as
commonly approximated with pseudo-random number generators on a computer. The
probability density function of this variable is given by

pX(x) =

�
1 for 0 ≤ x ≤ 1,
0 otherwise. (2.18)

We are seeking the probability density function pY (y) of the random variable

Y = e−X2

. (2.19)

The random number Y is not Gaussian distributed as we might think naively. To cal-
culate the probability density function we can employ the cumulative density function
eqn 2.16 by noting that

P (Y ≤ y) = P (e−X2

≤ y) = P (X ≥
�
− ln y). (2.20)

Thus, the cumulative probability function of Y can be calculated from the cumulative
probability function of X ,

P (X ≥
�

− ln y) =

�� 1√
− ln y pX(x)dy = 1−

√
− ln y for e−1 ≤ y ≤ 1,

0 otherwise.
(2.21)

The probability density function of Y is the the derivative of this function,

pY (y) =

�
1−

√
− ln y for e−1 ≤ y ≤ 1,

0 otherwise. (2.22)

The probability density functions of X and Y are shown below.

!"#$ " "#$ % %#$

"

"#$

%

" "#$ %

"

%

&

'

(

p
 (

x)
X

p
 (

y)
Y

yx

Y=e-X 2

Mathematical tools22 |

A special function of random variables, which is of particular interest it can approx-
imate many processes in nature, is the sum of many random variables. For example,
such a sum occurs if we calculate averages from measured quantities, that is,

X̄ =
1

n

n�

i=1

Xi, (2.23)

and we are interested in the probability density function of such random variables. This
function depends, of course, on the specific density function of the random variablesXi.
However, there is an important observation summarized in the central limit theorem.
This theorem states that the average (normalized sum) of n random variables that are
drawn from any distribution with mean µ and variance σ is approximately normally
distributed with mean µ and variance σ/n for a sufficiently large sample size n. The
approximation is, in practice, often very good also for small sample sizes. For example,
the normalized sum of only seven uniformly distributed pseudo-random numbers is
often used as a pseudo-random number for a normal distribution.

2.1.6 Measuring the difference between distributions

An important practical consideration is how to measure the similarity of difference
between two density functions, say the density function p and the density function
q. Note that such a measure is a matter of definition, similar to distance measures
of real numbers or functions. However, a proper distance measure, d, should be zero
if the items to be compared, a and b, are the same, it’s value should be positive
otherwise, and a distance measure should be symmetrical, meaning that d(a, b) =
d(b, a). The following popular measure of similarity between two density functions
is not symmetric and is hence not called a distance. It is called Kulbach–Leibler
divergence and is given by

d
KL(p, q) =

�
p(x) log(

p(x)

q(x)
)dx (2.24)

=

�
p(x) log(p(x))dx−

�
p(x) log(q(x))dx (2.25)

This measure is zero if p = q. This measure is related to the information gain or
relative entropy in information theory.

2.1.7 Density functions of multiple random variables

So far, we have discussed mainly probability (density) functions of single random
variables. As mentioned before, we use random variables to describe data such as
sensor readings in robots. Of course, we often have then more than one sensor and
also other quantities that we describe by random variables at the same time. Thus, in
many applications we consider multiple random variables. The quantities described by
the random variables might be independent, but in many cases they are also related.
Indeed, we will later talk about how to describe various types of relations. Thus, in
order to talk about situations with multiple random variables, or multivariate statistics,

| 23Probability theory

it is useful to know basic rules. We start by illustrating these basic multivariate rules
with two random variables since the generalization from there is usually quite obvious.
But we will also talk about the generalization to more than two variables at the end of
this section.

2.1.7.1 Basic definitions
We have seen that probability theory is quite handy to model data, and probability
theory also considers multiple random variables. The total knowledge about the co-
occurrence of specific values for two random variables X and Y is captured by the

joined distribution: p(x, y) = p(X = x, Y = y). (2.26)

This is a two dimensional functions. The two dimensions refers here to the number
of variables, although a plot of this function would be a three dimensional plot. An
example is shown in Fig.2.2. All the information we can have about a stochastic system
is encapsulated in the joined pdf. The slice of this function, given the value of one
variable, say y, is the

conditional distribution: p(x|y) = p(X = x|Y = y). (2.27)

A conditional pdf is also illustrated in Fig.2.2 If we sum over all realizations of y we
get the

marginal distribution: p(x) =

�
p(x, y)dy. (2.28)

!"

!#

$

#

"

!"

!#

$

#

"
$

%

#$

#%

$ % #$ #% "$ "% &$ &% '$ '% %$
$

"

'

(

)

#$

#"

#'

$ % #$ #% "$ "% &$ &% '$ '% %$
$

#

"

&

'

%

(

*

)

X
Y

p(X,Y)

p(X,Y)

p(Y|X=0.4)

p(X|Y=0.88)

Fig. 2.2 Example of a two-dimensional probability density function (pdf) and some examples of
conditional pdfs.

If we know some functional form of the density function or have a parameterized
hypothesis of this function, than we can use common statistical methods, such as

Mathematical tools24 |

maximum likelihood estimation, to estimate the parameters as in the one dimensional
cases. If we do not have a parameterized hypothesis we need to use other methods, such
as treating the problem as discrete and building histograms, to describe the density
function of the system. Note that parameter-free estimation is more challenging with
increasing dimensions. Considering a simple histogram method to estimate the joined
density function where we discretize the space along every dimension into n bins.
This leads to n2 bins for a two-dimensional histogram, and nd for a d-dimensional
problem. This exponential scaling is a major challenge in practice since we need also
considerable data in each bin to sufficiently estimate the probability of each bin.

2.1.7.2 The chain rule
As mentioned before, if we know the joined distribution of some random variables
we can make the most predictions of these variables. However, in practice we have
often to estimate these functions, and we can often only estimate conditional density
functions. A very useful rule to know is therefore how a joined distribution can be
decompose into the product of a conditional and a marginal distribution,

p(x, y) = p(x|y)p(y) = p(y|x)p(x), (2.29)

which is sometimes called the chain rule. Note the two different ways in which we can
decompose the joined distribution. This is easily generalized to n random variables by

p(x1, x2, ..., xn) = p(xn|x1, ...xn−1)p(x1, ..., xn−1) (2.30)
= p(xn|x1, ..., xn−1) ∗ ... ∗ p(x2|x1) ∗ p(x1) (2.31)
= Πn

i=1p(xi|xi−1, ...x1) (2.32)

but note that there are also different decompositions possible. We will learn more about
this and useful graphical representations in Chapter ??.

Estimations of processes are greatly simplified when random variables are inde-
pendent. A random variable X is independent of Y if

p(x|y) = p(x). (2.33)

Using the chain rule eq.2.29, we can write this also as

p(x, y) = p(x)p(y), (2.34)

that is, the joined distribution of two independent random variables is the product of
their marginal distributions. Similar, we can also define conditional independence. For
example, two random variables X and Y are conditionally independent of random
variable Z if

p(x, y|z) = p(x|z)p(y|z). (2.35)

Note that total independence does not imply conditionally independence and visa
versa, although this might hold true for some specific examples.

2.1.7.3 How to combine prior knowledge with new evidence: Bayes rule
One of the most common tasks we will encounter in the following is the integration
of prior knowledge with new evidence. For example, we could have an estimate of

| 25Vector and matrix notations

the location of an agent and get new (noisy) sensory data that adds some suggestions
for different locations. A similar task is the fusion of data from different sensors. The
general question we have to solve is how to weight the different evidence in light
of the reliability of this information. Solving this problem is easy in a probabilistic
framework and is one of the main reasons that so much progress has been made in
probabilistic robotics.

How prior knowledge should be combined with prior knowledge is an important
question. Luckily, basically already know how to do it best in a probabilistic sense.
Namely, if we divide this chain rule eq. 2.29 by p(x), which is possible as long as
p(x) > 0, we get the identity

p(x|y) = p(y|x)p(x)
p(y)

, (2.36)

which is called Bayes theorem. This theorem is important because it tells us how to
combine a prior knowledge, such as the expected distribution over a random variable
such as the state of a system, p(x), with some evidence called the likelihood function
p(y|x), for example by measuring some sensors reading y when controlling the state,
to get the posterior distribution, p(y|x) from which the new estimation of state can be
derived. The marginal distribution p(y), which does not depend on the state X , is the
proper normalization so that the left-hand side is again a probability.

Exercises

1. Use your favourite plotting program to plot a Gaussian, a uniform, and the
Chi-square distribution (probability density function). Include units on the axis.

2. Explain if the random variables X and Y are independent if their marginal
distribution is p(x) = 3x2 + log(x) and p(y) = 3y2 + log(y) and the joined
distributions is p(x, y) = 3x2y2 + log(xy).

3. (From Thrun, Burgard and Fox, Probabilistic Robotics) A robot uses a sensor
that can measure ranges from 0m to 3m. For simplicity, assume that the actual
ranges are distributed uniformly in this interval. Unfortunately, the sensors can
be faulty. When the sensor is faulty it constantly outputs a range below 1m,
regardless of the actual range in the sensor’s measurement cone. We know that
the prior probability for a sensor to be faulty is p = 0.01.
Suppose the robot queries its sensors N times, and every single time the mea-
surement value is below 1m. What is the posterior probability of a sensor fault,
for N = 1, 2, ..., 10. Formulate the corresponding probabilistic model.

2.2 Vector and matrix notations

We frequently use vector and matrix notation in this book as it is extremely convenient
for specifying neural network models. It is a shorthand notation for otherwise lengthy
looking formulas, and formulas written in this notation can easily be entered into
MATLAB. We consider three basic data types:

Mathematical tools26 |

1. Scalar:
a for example 41 (2.37)

2. Vector:

a or component-wise

a1

a2

a3

 for example

41
7
13

 (2.38)

3. Matrix:

a or component-wise

a11 a12

a21 a22

a31 a32

 for example

41 12
7 45
13 9

 (2.39)

We used bold face to indicate both a vector and a matrix because the difference is
usually apparent from the circumstances. A matrix is just a collection of scalars or
vectors. We talk about an n ×m matrix where n is the number of rows and m is the
number of columns. A scalar is thus a 1 × 1 matrix, and a vector of length n can be
considered an n × 1 matrix. A similar collection of data is called array in computer
science. However, a matrix is difference because we also define operations on these
data collections. The rules of calculating with matrices can be applied to scalars and
vectors.

We define how to add and multiply two matrices so that we can use them in
algebraic equations. The sum of two matrices is defined as the sum of the individual
components

(a+ b)ij = aij + bij . (2.40)

For example, a and b are 3× 2 matrices, then

a+ b =

a11 + b11 a12 + b12

a21 + b21 a22 + b22

a31 + b31 a32 + b32

 (2.41)

Matrix multiplication is defined as

(a ∗ b)ij =
�

k

aikbkj . (2.42)

The matrix multiplication is hence only defined as multiplication matrices a and b
where the number of columns of the matrix a is equal to the number of rows of matrix
b. For example, for two square matrices with two rows and two columns, their product
is given by

a ∗ b =

�
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

�
(2.43)

A handy rule for matrix multiplications is illustrated in Fig. 2.3. Each component in the
resulting matrix is calculated from the sum of two multiplicative terms. The rule for
multiplying two matrices is tedious but straightforward and can easily be implemented
in a computer. It is the default when multiplying variables of the matrix type in
MATLAB. If we want to multiply each component of a matrix by the corresponding
component in a second matrix, we just have to include the operator ‘.*’ between

| 27Vector and matrix notations

a !!

a ""a "!

a !" b!!

b""b"!

b!" #
a !! b!! a !" b"!$ a !! b!" a !" b""$

a "! b!! a "! b"!$ a "! b!" a "" b""$

Fig. 2.3 Illustration of a matrix multiplication. Each element in the resulting matrix consists of
terms that are taken from the corresponding row of the first matrix and column of the second
matrix. Thus in the example we calculate the highlighted element from the components of the
first row of the first matrix and the second column of the the second matrix. From these rows and
columns we add all the terms that consist of the element-wise multiplication of the terms.

the matrices in MATLAB where the dot in front of the multiplication sign indicates
‘component-wise’.

Another useful definition is the transpose of a matrix. This operation, indicated
usually by a superscript t or a prime (�). The later is used in MATLAB. Taking the
transpose of a matrix means that the matrix is rotated 90 degrees; the first row becomes
the first column, the second row becomes the second column, etc. For example, the
transpose of the example in 2.39 is

a� =

�
41 7 13
12 45 9

�
(2.44)

The transpose of a vector transforms a column vector into a row vector and vice versa.
As already mentioned, matrices were invented to simplify the notations for systems

of coupled algebraic equations. Consider, for example, the system of three equations

41x1 + 12x2 = 17 (2.45)
7x1 + 45x2 = −83 (2.46)
13x1 + 9x2 = −5. (2.47)

This can be written as
ax = b (2.48)

with the matrix a as in the example of 2.39, the vector x = (x1 x2)�, and the vector
b = (17 − 83 − 5)�.

The solution of this linear equation system is equivalent to finding the inverse of
matrix a which we write as a−1. The inverse of the matrix is defined by

a−1a = 11, (2.49)

where the matrix 11 is the unit matrix that has element of one on the diagonal and zeros
otherwise. Multiplying equation 2.48 from left with a−1 is hence

x = a−1b (2.50)

The inverse of a matix, if this exists, can be found by the MATLAB function inv().

Mathematical tools28 |

2.3 Basic calculus

2.3.1 Differences and sums

We are often interested how a variable change with time. Let us consider the quantity
x(t) where we indicated that this quantity depends on time. The change of this variable
from time t to time t� = t+∆t is then

∆x = x(t+∆t)− x(t). (2.51)

The quantity ∆t is the finite difference in time. For a continuously changing quantity
we could also think about the instantaneous change value, dx, by considering an
infinitesimally small time step. Formally,

dx = lim
∆t→0

∆x = lim
∆t→0

(x(t+∆t)− x(t)). (2.52)

The infinitesimally small time step is often written as dt. Calculating with such in-
finitesimal quantities is covered in the mathematical discipline of calculus, but on the
computer we have always finite differences and we need to consider very small time
steps to approximate continuous formulation. With discrete time steps, differential
become differences and integrals become sums

dx→∆x (2.53)�
dx → ∆x

�
(2.54)

Note the factor of ∆x in front of the summation in the last equation. It is easy to forget
this factor when replacing integrals with sums.

2.3.2 Derivatives

The derivative of a quantity y that depends on x is the slope of the function y(x).
This derivative can be defined as the limiting process equation 2.52 and is commonly
written as dy

dx or as y�.

! " # $ % &!

!

&

y = sin(x)

y’ = cos(x)

It is useful to know some derivatives of basic functions.

| 29Basic calculus

y = e
x → y

� = e
x (2.55)

y = sin(x) → y
� = cos(x) (2.56)

y = x
n → y

� = nx
n−1 (2.57)

y = log(x) → 1

x
(2.58)

as well as the chain rule

y = f(x) → y
� =

dy

dx
=

dy

df

df

dx
. (2.59)

2.3.3 Partial derivative and gradients

A function that depends on more than one variable is a higher dimensional function.
An example is the two-dimensional function z(x, y). The slope of the function in the
direction x (keeping y constant) is defined as ∂z

∂x and in the direction of y (keeping x

constant) as ∂z
∂x . The gradient is the vector that point in the direction of the maximal

slope and has a length proportional t the slope,

gradz =

� ∂z
∂x
∂z
∂y

�
. (2.60)

!

"!

#!

$!

%!

&!

'! !
"!

#!
$!

%!

!

!(&

"

3 Programming with Matlab

This chapter is a brief introduction to programming with the Matlab programming en-
vironment. We assume thereby little programming experience, although programmers
experienced in other programming languages might want to scan through this chapter.
MATLAB is an interactive programming environment for scientific computing. This
environment is very convenient for us for several reasons, including its interpreted exe-
cution mode, which allows fast and interactive program development, advanced graphic
routines, which allow easy and versatile visualization of results, a large collection of
predefined routines and algorithms, which makes it unnecessary to implement known
algorithms from scratch, and the use of matrix notations, which allows a compact and
efficient implementation of mathematical equations and machine learning algorithms.
MATLAB stands for matrix laboratory, which emphasizes the fact that most opera-
tions are array or matrix oriented. Similar programming environments are provided
by the open source systems called Scilab and Octave. The Octave system seems to
emphasize syntactic compatibility with MATLAB, while Scilab is a fully fledged al-
ternative to MATLAB with similar interactive tools. While the syntax and names of
some routines in Scilab are sometimes slightly different, the distribution includes a
converter for MATLAB programs. Also, the Matlab web page provides great videos
to learn how to use Matlab at http://www.mathworks.com/demos/matlab/...
...getting-started-with-matlab-video-tutorial.html.

3.1 The MATLAB programming environment
MATLAB4 is a programming environment and collection of tools to write programs,
execute them, and visualize results. MATLAB has to be installed on your computer to
run the programs mentioned in the manuscript. It is commercially available for many
computer systems, including Windows, Mac, and UNIX systems. The MATLAB web
page includes a set of brief tutorial videos, also accessible from the demos link from
the MATLAB desktop, which are highly recommended for learning MATLAB.

As already mentioned, there are several reasons why MATLAB is easy to use and
appropriate for our programming need. MATLAB is an interpreted language, which
means that commands can be executed directly by an interpreter program. This makes
the time-consuming compilation steps of other programming languages redundant and
allows a more interactive working mode. A disadvantage of this operational mode is
that the programs could be less efficient compared to compiled programs. However,
there are two possible solution to this problem in case efficiency become a concern.
The first is that the implementations of many MATLAB functions is very efficient

4MATLAB and Simulink are registered trademarks, and MATLAB Compiler is a trademark of The
MathWorks, Inc.

| 31Main programming constructs

and are themselves pre-compiled. MATLAB functions, specifically when used on
whole matrices, can therefore outperform less well-designed compiled code. It is thus
recommended to use matrix notations instead of explicit component-wise operations
whenever possible. A second possible solutions to increase the performance is to use
the MATLAB compiler to either produce compiled MATLAB code in .mex files or to
translate MATLAB programs into compilable language such as C.

A further advantage of MATLAB is that the programming syntax supports matrix
notations. This makes the code very compact and comparable to the mathematical
notations used in the manuscript. MATLAB code is even useful as compact nota-
tion to describe algorithms, and it is hence useful to go through the MATLAB code
in the manuscript even when not running the programs in the MATLAB environ-
ment. Furthermore, MATLAB has very powerful visualization routines, and the new
versions of MATLAB include tools for documentation and publishing of codes and
results. Finally, MATLAB includes implementations of many mathematical and sci-
entific methods on which we can base our programs. For example, MATLAB includes
many functions and algorithms for linear algebra and to solve systems of differential
equations. Specialized collections of functions and algorithms, called a ‘toolbox’ in
MATLAB, can be purchased in addition to the basic MATLAB package or imported
from third parties, including many freely available programs and tools published by
researchers. For example, the MATLAB Neural Network Toolbox incorporates func-
tions for building and analysing standard neural networks. This toolbox covers many
algorithms particularly suitable for connectionist modelling and neural network ap-
plications. A similar toolbox, called NETLAB, is freely available and contains many
advanced machine learning methods. We will use some toolboxes later in this course,
including the LIBSVM toolbox and the MATLAB NXT toolbox to program the Lego
robots.

Starting MATLAB opens the MATLAB desktop as shown in Fig. 3.1 for MATLAB
version 7. The MATLAB desktop is comprised of several windows which can be
customized or undocked (moving them into an own window). A list of these tools are
available under the desktop menu, and includes tools such as the command window,
editor, workspace, etc. We will use some of these tools later, but for now we only
need the MATLAB command window. We can thus close the other windows if they
are open (such as the launch pad or the current directory window); we can always
get them back from the desktop menu. Alternatively, we can undock the command
window by clicking the arrow button on the command window bar. An undocked
command window is illustrated on the left in Fig. 3.2. Older versions of MATLAB
start directly with a command window or simply with a MATLAB command prompt
>> in a standard system window. The command window is our control centre for
accessing the essential MATLAB functionalities.

3.2 Main programming constructs

3.2.1 Basic variables in MATLAB

The MATLAB programming environment is interactive in that all commands can
be typed into the command window after the command prompt (see Fig. 3.2). The

Programming with Matlab32 |

Fig. 3.1 The MATLAB desktop window of MATLAB Version 7.

Fig. 3.2 A MATLAB command window (left) and a MATLAB figure window (right) displaying the
results of the function plot sin developed in the text.

commands are interpreted directly, and the result is returned to (and displayed in) the
command window. For example, a variable is created and assigned a value with the =
operator, such as

>> a=3

| 33Main programming constructs

a =

3

Ending a command with semicolon (;) suppresses the printing of the result on screen.
It is therefore generally included in our programs unless we want to view some
intermediate results. All text after a percentage sign (%) is not interpreted and thus
treated as comment,

>> b=’Hello World!’; % delete the semicolon to echo Hello World!

This example also demonstrates that the type of a variable, such as being an integer,
a real number, or a string, is determined by the values assigned to the elements. This
is called dynamic typing. Thus, variables do not have to be declared as in some other
programming languages. While dynamic typing is convenient, a disadvantage is that
a mistyped variable name can not be detected by the compiler. Inspecting the list of
created variables is thus a useful step for debugging.

All the variables that are created by a program are kept in a buffer called workspace.
These variable can be viewed with the command whos or displayed in the workspace
window of the MATLAB desktop. For example, after declaring the variables above,
the whos command results in the responds

>> whos
Name Size Bytes Class Attributes

a 1x1 8 double
b 1x12 24 char

It displays the name, the size, and the type (class) of the variable. The size is often
useful to check the orientation of matrices as we will see below. The variables in the
workspace can be used as long as MATLAB is running and as long as it is not cleared
with the command clear. The workspace can be saved with the command save
filename, which creates a file filename.mat with internal MATLAB format. The
saved workspace can be reloaded into MATLAB with the command load filename.
The load command can also be used to import data in ASCII format. The workspace
is very convenient as we can run a program within a MATLAB session and can then
work interactively with the results, for example, to plot some of the generated data.

Variables in MATLAB are generally matrices (or data arrays), which is very con-
venient for most of our purposes. Matrices include scalars (1× 1 matrix) and vectors
(1×N matrix) as special cases. Values can be assigned to matrix elements in several
ways. The most basic one is using square brackets and separating rows by a semicolon
within the square brackets, for example (see Fig. 3.2),

>> a=[1 2 3; 4 5 6; 7 8 9]

a =

1 2 3
4 5 6
7 8 9

Programming with Matlab34 |

A vector of elements with consecutive values can be assigned by column operators
like

>> v=0:2:4

v =

0 2 4

Furthermore, the MATLAB desktop includes an array editor, and data in ASCII files
can be assigned to matrices when loaded into MATLAB. Also, MATLAB functions
often return matrices which can be used to assign values to matrix elements. For
example, a uniformly distributed random 3 × 3 matrix can be generated with the
command

>> b=rand(3)

b =

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

The multiplication of two matrices, following the matrix multiplication rules, can be
done in MATLAB by typing

>> c=a*b

c =

3.2329 4.5549 2.9577
8.5973 10.9730 6.8468
13.9616 17.3911 10.7360

This is equivalent to

c=zeros(3);
for i=1:3

for j=1:3
for k=1:3

c(i,j)=c(i,j)+a(i,k)*b(k,j);
end

end
end

which is the common way of writing matrix multiplications in other programming
languages. Formulating operations on whole matrices, rather than on the individual
components separately, is not only more convenient and clear, but can enhance the
programs performance considerably. Whenever possible, operations on whole matrices
should be used. This is likely to be the major change in your programming style
when converting from another programming language to MATLAB. The performance
disadvantage of an interpreted language is often negligible when using operations on

| 35Main programming constructs

whole matrices.
The transpose operation of a matrix changes columns to rows. Thus, a row vector

such as v can be changed to a column vector with the MATLAB transpose operator
(’),
>> v’

ans =

0
2
4

which can then be used in a matrix-vector multiplication like
>> a*v’

ans =

16
34
52

The inconsistent operation a*v does produce an error,
>> a*v
??? Error using ==> mtimes
Inner matrix dimensions must agree.

Component-wise operations in matrix multiplications (*), divisions (/) and potentia-
tion ∧ are indicated with a dot modifier such as
>> v.^2

ans =

0 4 16

The most common operators and basic programming constructs in MATLAB are
similar to those in other programming languages and are listed in Table 3.1.

3.2.2 Control flow and conditional operations
Besides the assignments of values to variables, and the availability of basic data
structures such as arrays, a programming language needs a few basic operations for
building loops and for controlling the flow of a program with conditional statements
(see Table 3.1). For example, the for loop can be used to create the elements of the
vector v above, such as
>> for i=1:3; v(i)=2*(i-1); end
>> v

v =

Programming with Matlab36 |
Table 3.1 Basic programming contracts in MATLAB.

Programming Command Syntax
construct
Assignment = a=b
Arithmetic add a+b
operations multiplication a*b (matrix), a.*b (element-wise)

division a/b (matrix), a./b (element-wise)
power a∧b (matrix), a.∧b (element-wise)

Relational equal a==b
operators not equal a∼=b

less than a<b
Logical AND a & b
operators OR a�b
Loop for for index=start:increment:end

statement
end

while while expression
statement

end
Conditional if statement if logical expressions
command statement

elseif logical expressions
statement

else
statement

end
Function function [x,y,...]=name(a,b,...)

0 2 4

Table 3.1 lists, in addition, the syntax of a while loop. An example of a conditional
statement within a loop is
>> for i=1:10; if i>4 & i<=7; v2(i)=1; end; end
>> v2

v2 =

0 0 0 0 1 1 1

In this loop, the statement v2(i)=1 is only executed when the loop index is larger
than 4 and less or equal to 7. Thus, when i=5, the array v2 with 5 elements is created,
and since only the elements v2(5) is set to 1, the previous elements are set to 0 by
default. The loop adds then the two element v2(6) and v2(7). Such a vector can also
be created by assigning the values 1 to a specified range of indices,
>> v3(4:7)=1

v3 =

| 37Creating MATLAB programs

0 0 0 1 1 1 1

A 1×7 array is thereby created with elements set to 0, and only the specified elements
are overwritten with the new value 1. Another method to write compact loops in
MATLAB is to use vectors as index specifiers. For example, another way to create a
vector with values such as v2 or v3 is
>> i=1:10

i =

1 2 3 4 5 6 7 8 9 10

>> v4(i>4 & i<=7)=1

v4 =

0 0 0 0 1 1 1

3.3 Creating MATLAB programs
If we want to repeat a series of commands, it is convenient to write this list of
commands into an ASCII file with extension ‘.m’. Any ASCII editor (for example;
WordPad, Emacs, etc.) can be used. The MATLAB package contains an editor that has
the advantage of colouring the content of MATLAB programs for better readability and
also provides direct links to other MATLAB tools. The list of commands in the ASCII
file (e.g. prog1.m) is called a script in MATLAB and makes up a MATLAB program.
This program can be executed with a run button in the MATLAB editor or by calling
the name of the file within the command window (for example, by typing prog1). We
assumed here that the program file is in the current directory of the MATLAB session
or in one of the search paths that can be specified in MATLAB. The MATLAB desktop
includes a ‘current directory’ window (see desktop menu). Some older MATLAB
versions have instead a ‘path browser’. Alternatively, one can specify absolute path
when calling a program, or change the current directories with UNIX-style commands
such as cd in the command window (see Fig. 3.3).

Functions are another way to encapsulate code. They have the additional advan-
tage that they can be pre-compiled with the MATLAB CompilerTM available from
MathWorks, Inc. Functions are kept in files with extension ‘.m’ which start with the
command line like
function y=f(a,b)

where the variables a and b are passed to the function and y contains the values returned
by the function. The return values can be assigned to a variable in the calling MATLAB

Programming with Matlab38 |

Run program

Fig. 3.3 Two editor windows and a command window.

script and added to the workspace. All other internal variables of the functions are local
to the function and will not appear in the workspace of the calling script.

MATLAB has a rich collection of predefined functions implementing many algo-
rithms, mathematical constructs, and advanced graphic handling, as well as general
information and help functions. You can always search for some keywords using the
useful command lookfor followed by the keyword (search term). This command
lists all the names of the functions that include the keywords in a short description
in the function file within the first comment lines after the function declaration in
the function file. The command help, followed by the function name, displays the
first block of comment lines in a function file. This description of functions is usually
sufficient to know how to use a function. A list of some frequently used functions is
listed in Table 3.3.

3.4 Graphics

MATLAB is a great tool for producing scientific graphics. We want to illustrate this
by writing our first program in MATLAB: calculating and plotting the sine function.
The program is

x=0:0.1:2*pi;
y=sin(x);
plot(x,y)

| 39Graphics

Name Brief description
abs absolute functions
axis sets axis limits
bar produces bar plot
ceil round to larger interger
colormap colour matrix for surface plots
cos cosine function
diag diagonal elements of a matrix
disp display in command window
errorbar plot with error bars
exp exponential function
fft fast Fourier transform
find index of non-zero elements
floor round to smaller integer
hist produces histogram
int2str converts integer to string
isempty true if array is empty
length length of a vector
log logarithmic function
lsqcurevfit least mean square curve

fitting (statistics toolbox)
max maximum value and index
mix minimum value and index
mean calculates mean
meshgrid creates matrix to plot grid

Name Brief description
mod modulus function
num2str converts number to string
ode45 ordinary differential equation solver
ones produces matrix with unit elements
plot plot lines graphs
plot3 plot 3-dimensional graphs
prod product of elements
rand uniformly distributed random variable
randn normally distributed random variable
randperm random permutations
reshape reshaping a matrix
set sets values of parameters in structure
sign sign function
sin sine function
sqrt square root function
std calculates standard deviation
subplot figure with multiple subfigures
sum sum of elements
surf surface plot
title writes title on plot
view set viewing angle of 3D plot
xlabel label on x-axis of a plot
ylabel label on y-axis of a plot
zeros creates matrix of zero elements

Table 3.2 MATLAB functions used in this course. The MATLAB command help cmd, where
cmd is any of the functions listed here, provides more detailed explanations.

The first line assigns elements to a vector x starting with x(1) = 0 and incrementing
the value of each further component by 0.1 until the value 2π is reached (the variable
pi has the appropriate value in MATLAB). The last element is x(63) = 6.2. The
second line calls the MATLAB function sin with the vector x and assigns the results
to a vector y. The third line calls a MATLAB plotting routine. You can type these
lines into an ASCII file that you can name plot sin.m. The code can be executed by
typing plot sin as illustrated in the command window in Fig. 3.2, provided that the
MATLAB session points to the folder in which you placed the code. The execution of
this program starts a figure window with the plot of the sine function as illustrated on
the right in Fig. 3.2.

The appearance of a plot can easily be changed by changing the attributes of the
plot. There are several functions that help in performing this task, for example, the
function axis that can be used to set the limits of the axis. New versions of MATLAB
provide window-based interfaces to the attributes of the plot. However, there are also
two basic commands, get and set, that we find useful. The command get(gca)
returns a list with the axis properties currently in effect. This command is useful for
finding out what properties exist. The variable gca (get current axis) is the axis handle,
which is a variable that points to a memory location where all the attribute variables are

Programming with Matlab40 |

kept. The attributes of the axis can be changed with the set command. For example,
if we want to change the size of the labels we can type set(gca,’fontsize’,18).
There is also a handle for the current figure gcf that can be used to get and set other
attributes of the figure. MATLAB provides many routines to produce various special
forms of plots including plots with error-bars, histograms, three-dimensional graphics,
and multi-plot figures.

3.5 A first project: modelling the world

Suppose there is a simple world with a creature that can be in three distinct states,
sleep (state value 1), eat (state value 2), and study (state value 3). An agent, which
is a device that can sense environmental states and can generate actions, is observing
this creature with poor sensors, which add white (Gaussian) noise to the true state.
Our aim is to build a model of the behaviour of the creature which can be used by
the agent to observe the states of the creature with some accuracy despite the limited
sensors. For this exercise, the function creature state() is available on the course
page on the web. This function returns the current state of the creature. Try to create
an agent program that predicts the current state of the creature. In the following we
discuss some simple approches.

A simulation program that implements a specific agent a with simple world model
(a model of the creature), which also evaluates the accuracy of the model, is given in
Table 3.3. This program, also available on the web, is provided in file main.m. This
program can be downloaded into the working directory of MATLAB and executed by
typing main into the command window, or by opening the file in the MATLAB editor
and starting it from there by pressing the icon with the green triangle. The program
reports the percentage of correct perceptions of the creature’s state.

Line 1 of the program uses a comment indicator (%) to outline the purpose of the
program. Line 2 clears the workspace to erase all eventual existing variables, and sets
a counter for the number of correct perceptions to zero. Line 4 starts a loop over 1000
trials. In each trial, a creature state is pulled by calling the function creature state()
and recording this state value in variable x. The sensory state s is then calculated by
adding a random number to this value. The value of the random number is generated
from a normal distribution, a Gaussian distribution with mean zero and unit variance,
with the MATLAB function randn().

We are now ready to build a model for the agent to interpret the sensory state. In the
example shown, this model is given in Lines 8–12. This model assumes that a sensory
value below 1.5 corresponds to the state of a sleeping creature (Line 9), a sensory value
between 1.5 and 2.5 corresponds to the creature eating (Line 10), and a higher value
corresponds to the creature studying (Line 11). Note that we made several assumptions
by defining this model, which might be unreasonable in real-world applications. For
example, we used our knowledge that there are three states with ideal values of 1,
2, and 3 to build the model for the agent. Furthermore, we used the knowledge that
the sensors are adding independent noise to these states in order to come up with the
decision boundaries. The major challenge for real agents is to build models without
this explicit knowledge. When running the program we find that a little bit over 50%

| 41A first project: modelling the world

Table 3.3 Program main.m

1 % Project 1: simulation of agent which models simple creature
2 clear; correct=0;
3
4 for trial=1:1000
5 x=creature_state();
6 s=x+randn();
7
8 %% perception model
9 if (s<1.5) x_predict=1;
10 elseif (s<2.5) x_predict=2;
11 else x_predict=3;
12 end
13
14 %% calculate accuracy
15 if (x==x_predict) correct=correct+1; end
16 end
17
18 disp([’percentage correct: ’,num2str(correct/1000)]);

of the cases are correctly perceived by the agent. While this is a good start, one could
do better. Try some of your own ideas . . .

. . . Did you succeed in getting better results? It is certainly not easy to guess some
better model, and it is time to inspect the data more carefully. For example, we can
plot the number of times each state occurs. For this we can write a loop to record the
states in a vector,

>> for i=1:1000; a(i)=creature_state(); end

and then plot a histogram with the MATLAB function hist(),

>> hist(a)

The result is shown in Fig. 3.4. This histogram shows that not all states are equally
likely as we implicitly assumed in the above agent model. The third state is indeed
much less likely. We could use this knowledge in a modified model in which we predict
that the agent is sleeping for sensory states less than 1.5 and is eating otherwise. This
modified model, which completely ignores study states, predicts around 65% of the
states correctly. Many machine learning methods suffer from such ‘explaining away’
solutions for imbalanced data, as further discussed in Chapter ??.

It is important to recognize that 100% accuracy is not achievable with the inherent
limitations of the sensors. However, higher recognition rates could be achieved with
better world (creature + sensor) models. The main question is how to find such a
model. We certainly should use observed data in a better way. For example, we
could use several observations to estimate how many states are produced by function
creature state() and their relative frequency. Such parameter estimation is a basic
form of learning from data. Many models in science take such an approach by proposing
a parametric model and estimating parameters from the data by model fitting. The main

Programming with Matlab42 |

! !"# $ $"# %&

!&&

$&&

%&&

'&&

#&&

N
um

be
r o

f o
cc

ur
en

ce
s i

n
10

00
 tr

ia
ls

Creature state value

Fig. 3.4 The MATLAB desktop window histogram of states produced by function
creature state() from 1000 trials.

challenge with this approach is how complex we should make the model. It is much
easier to fit a more complex model with many parameters to example data, but the
increased flexibility decreases the prediction ability of such models. Much progress has
been made in machine learning by considering such questions, but those approaches
only work well in limited worlds, certainly much more restricted than the world we
live in. More powerful methods can be expected by learning how the brain solves such
problems.

3.6 Alternative programming environments: Octave and
Scilab

We briefly mention here two programming environments that are very similar to
Matlab and that can, with certain restrictions, execute Matlab scripts. Both of these
programming systems are open source environments and have general public licenses
for non-commercial use.

The programming environment called Octave is freely available under the GNU
general public license. Octave is available through links at http://www.gnu.org/software/octave/.
The installation requires the additional installation of a graphics package, such as gnu-
plot or Java graphics. Some distributions contain the SciTE editor which can be used
in this environment. An example of the environment is shown in Fig. 3.5

Scilab is another scientific programming environment similar to MATLAB. This
software package is freely available under the CeCILL software license, a license
compatible to the GNU general public license. It is developed by the Scilab consortium,
initiated by the French research centre INRIA. The Scilab package includes a MATLAB
import facility that can be used to translate MATLAB programs to Scilab. A screen
shot of the Scilab environment is shown in Fig. 3.6. A Scilab script can be run from
the execute menu in the editor, or by calling exec("filename.sce").

| 43Alternative programming environments: Octave and Scilab

Fig. 3.5 The Octave programming environment with the main console, and editor called SciTE,
and a graphics window.

Exercises

1. Write a Matlab function that takes a character string and prints out the character
string in reverse order.

2. Write a Matlab program that uses 3-dimensional plotting routines to plot a two
dimensional Gaussian function.

3. Following up from the 3rd question of the last assignment (the faulty sensor
question), use Matlab to plot the believe that the sensor is faulty against the
number of measurements.

Programming with Matlab44 |

Fig. 3.6 The Scilab programming environment with console, and editor called SciPad, and a
graphics window.

4 Basic robotics with LEGO NXT

4.1 Building a basic robot with LEGO NXT
We will use the LEGO mindstorm system in this course. Besides having common
LEGO building blocks to construct different designs, this system consist of a micro-
processor, called the brick, which is programmable and which controls the sensors
and actuators. The actuators are stepping motors that can be told to run for a specific
duration, a specific number of rotations, or with a specific speed. Our tool kit also
includes several sensors, a light sensor that can be used to measure the wavelength
of reflecting light and also small distances, an ultrasonic sensor to measure larger
distances, a touch sensor, and a microphone. The motors can also be used to sense
some externally applied movements.

We will use a basic tribot design as shown in Fig.4.1 for most of the explorations in
this course. We will build the basic tribot in the following tutorial and will outline an
example of a program to avoids walls and then work on a program so that the tribot can
follow a line. After this we will use a robot arm configuration to discuss the important
concept of a configuration space and demonstrate path-planing.

Fig. 4.1 Basic Lego Robot with microprocessor, two motors, and a light sensor.

4.1.1 Building the tribot

1. Charge the battery
Before constructing the robot, plug the battery pack into the NXT brick controller
and plug it into an outlet to recharge the battery.

2. Construct the NXT

Basic robotics with LEGO NXT46 |

Follow the instruction booklet included with the Lego kit to construct the robot.
There are mini programs illustrated in the manual that can be implemented
directly on the NXT brick. Although this is not the method that will be used to
control the NXT, you may implement them if you have time in order to get an
idea of how the sensors and motors function. The instruction manual is organized
as follows:

Section Pages
NXT brick base construction 8-23
Sound sensor mounting 24-27
Ultrasonic sensor mounting 28-31
Light sensor mounting 32-39
Touch sensor mounting 40-45

4.1.2 Mindstorms NXT toolbox installation

We will use some software to control the Lego actuator and gather information from
their sensors within the Matlab programming environment. To enable this we need to
install software developed at the German university called ‘RWTH Aachen’, which in
turn uses some other drivers that we need to install. Most of the software should be
installed in our Lab, but we will outline briefly some of the installation issues in case
you want to install them under your own system or if some problems exists with the
current installation. The following software installation instructions are adapted from
RWTH Aachen University’s NXT Toolbox website:
http://www.mindstorms.rwth-aachen.de/trac/wiki/Download4.04
Currently, the toolbox is not available for USB connections are not available on Mac
because of 64-bit compatibility issues; therefore, you will only be able to connect to
the NXT via Bluetooth if you are using a Mac.

| 47Building a basic robot with LEGO NXT

1. Check NXT Firmware version
Check what version of NXT Firmware is running on the NXT brick by going to
"Settings" > "NXT Version". Firmware version ("FW") should be 1.28 or 1.29.
If it does not, it needs to be updated (Note: The NXT toolbox website claims
version 1.26 will work, however it will not, and 1.31 has not worked in previous
tests)
To update the firmware:
The Lego Mindstorms Education NXT Programming software is required to
update the firmware. In the NXT Programming software, look under "tools"
> "Update NXT Firmware" > "browse", select the firmware’s directory, click
"download".

2. Setting up a USB Connection [Windows Users only]
The toolbox requires different installation instructions depending on whether
you are running 32 or 64-bit Matlab. To check which version you are running,
in Matlab go to"Help">"About".

On 32-bit Matlab [Windows Users only]
• Install USB (Fantom) Driver

If the Lego Mindstorms Education NXT Programming software is already
on your computer, this should already be installed. Otherwise, download
it from: http://mindstorms.lego.com/support/updates/
∗ If you run into problems with the Fantom Library on windows go to

this site for help:
http://bricxcc.sourceforge.net/NXTFantomDriverHelp.pdf

∗ If you have Windows 7 Starter edition the standard setup file will not
run properly. To install the Fantom Driver go into Products and then
LEGO NXT Driver 32 and run LegoMindstormsNXTdriver32.

• Download the Mindstorms NXT Toolbox 4.04:
Download: http://www.mindstorms.rwth-aachen.de/trac/wiki/Download4.04
∗ Save and extract the files anywhere, but do not change the directory

structure.
∗ The folder will appear as "RWTHMindstormsNXT"

On 64-bit Matlab [Windows Users only]
• Download libusb-win32

Download: http://sourceforge.net/projects/libusb-win32/files/
∗ Save and extract the files anywhere.
∗ Open the extracted folder and go to "bin". Run the inf-wizard and

follow the instructions. This will install a device driver for the NXT
connection.

• Download the Mindstorms NXT Toolbox 4.04:
Download: http://projects.cs.dal.ca/hallab/wiki/index.php/RWTH Mindstorms NXT Toolbox (64-
bit)
∗ Save and extract the files anywhere, but do not change the directory

structure.
∗ The folder will appear as "RWTHMindstormsNXT64"

Basic robotics with LEGO NXT48 |

3. Install NXT Toolbox into Matlab
In Matlab: "File" > "SetPath" > "Add Folder", and browse and select "RWTH-
MindstormsNXT" or "RWTHMindstormsNXT64"- the which is a subfolder of
file you saved in the previous step.

• Also add the "tools" folder, which is a subdirectory of the RWTHMind-
stormsNXT folder.

• Click "save" when finished.
4. Download MotorControl to NXT brick

Use the USB cable for this step. Lego’s Fantom Driver is also required for this
step. This will already be installed if you have the Lego Mindstorms Educa-
tion NXT Programming software or if you downloaded it when setting up a
USB connection with 32-bit Matlab in Windows. Otherwise, download it from:
http://mindstorms.lego.com/en-us/support/files/default.aspx#Driver

• Windows: Download the NBC compiler (http://bricxcc.sourceforge.net/nbc/).
Unzip the folder and move the file "nbc.exe" to RWTHMindstormsNXT/tools/MotorControl.
Under RWTHMindstormsNXT/tools/MotorControl, double click Trans-
ferMotorControlBinaryToNXT, and follow the onscreen instructions. If
this fails, try using NeXTTool instead of nbc; download from http://bricxcc.sourceforge.net/utilities.html
(be careful to download NeXTTool not NexTTools!). Again, unzip the
folder and move the file "NeXTTool.exe" to the MotorControl folder.

• Mac: Download the NeXT Tools for Mac OS X from
http://bricxcc.sourceforge.net/utilities.html. Run the toolbar and open the
NXT Explorer (the globe in the toolbar). With the arrow key at the
top, transfer the file MotorControl22.rxe (found in RWTHMindstorm-
sNXT/tools/MotorControl) to the brick.

5. Setting up a Bluetooth connection [optional if you’re connecting via USB]
• To connect to the NXT via bluetooth you must first turn on the bluetooth

in the NXT and make sure that the visibility is set to on. Then use the
bluetooth device on your computer to search for your specific NXT. The
name of your NXT can be found at the top center of your NXT’s screen.

• Create a connection between the computer and the NXT. When you create
the connection between the NXT and the bluetooth device the NXT will
ask for a passkey (usually either 0000 or 1234 on the NXT screen and press
the orange button. The computer will then ask for the same passkey. To test
the connection, type the command COM OpenNXT(’bluetooth.ini’);
in the Matlab command window. The command should run without any
red error messages.

• Make sure that the bluetooth.ini file is present. There are sample files for
Windows and Linux (Mac) in the main RWTH toolbox folder. If it is not
present, create one by running the command COM MakeBTConfigFile in
Matlab.

• Check if the serial ports are correct in the "bluetooth.ini" file are correct. In
Windows, go to the Control Panel, click "Hardware and Sound">"Devices
and Printers". Find the NXT device, right click it and go to "Properties".
The COMPort will be listed under the "Services" tab (i.e. "COM3"). On
Mac, The port name can be found by typing ls -ltr /dev in a terminal

| 49Basic MATLAB NXT toolbox commands

window, or by going to "System Preferences">"Bluetooth Devices". Select
your NXT and click on the gear symbol (left hand bottom corner). The
COMPort should be listed there.

• Turning the NXT off and back on again can help. After every failed
COM OpenNXT(’bluetooth.ini’); command typeCOM CloseNXT(’all’);
to close the failed connection for a clean new attempt.

• To switch on a debug mode enter the command DebugMode on before
entering the command COM OpenNXT(’bluetooth.ini’); .

6. Does it work?
In Matlab, enter the commands below into the command window. The command
should execute without error and the NXT should play a sound.
h=COM OpenNXT(); COM SetDefaultNXT(h);
NXT PlayTone(400,300);

h=COM OpenNXT(); To test a USB connection you need to include an argument in
theCOM OpenNXT() function likeCOM OpenNXT(’bluetooth.ini’)COM SetDefaultNXT(h);
Note that there are some examples included with the RWTH Mindstorm’s NXT Tool-
box, under RWTHMindstormsNXT/demos.

4.2 Basic MATLAB NXT toolbox commands
The instructions in this section have been adapted from RWTH’s website. Installation
instructions from:

http://www.mindstorms.rwth-aachen.de/trac/wiki/Download4.03

Basic robotics with LEGO NXT50 |

Coding instructions from:
http://www.mindstorms.rwth-aachen.de/trac/wiki/Documentation

You can find more instruction on installation and usage of the RWTH Mindstorms
NXT Toolbox from both of these sites.

4.2.1 Startup NXT

The first thing to do is make sure the workspace is clear. Enter:
COM CloseNXT(’all’);
close all;
clear all;

To start, enter:
hNXT=COM OpenNXT; %hNXT is an arbitrary name
COM SetDefaultNXT(hNXT); %sets opened NXT as the

%default handle

4.2.2 NXT Motors

Motors are treated as objects. To create one, enter:
motorA = NXTMotor(’a’); %motorA is an arbitrary name, ’a’ is

%the port the motor connected to

This will give:

NXTMotor object properties:
Port(s): 0 (A)
Power: 0

SpeedRegulation: 1 (on)
SmoothStart: 0 (off)

TachoLimit: 0 (no limit)
ActionAtTachoLimit: ’Brake’ (brake, turn off when stopped)

4.2.3 Basic Motor Commands & Properties

Below is a list of these properties and how to change them:

Power
Determines speed of the motor
motorA.Power=50; % value must be between -100 and 100 (negative

% will cause the motor to rotate in reverse)

SpeedRegulation
If the motor encounters some sort of load, the motor will (if possible) increase it power
to keep a constant speed

| 51Basic MATLAB NXT toolbox commands

motorA.SpeedRegulation=true; % either true or false, or
alternatively, 1 for true, 0 for
false

SmoothStart
Causes the motor to slowly accelerate and build up to full speed.
Works only if ActionAtTachoLimit is not set to ’coast’ and if TachoLimit>0

motorA.SmoothStart= true; % either true or false, or
% 1 for true, 0 for false

ActionAtTachoLimit
Determines how the motor will come to rest after the TachoLimit has been reached.
There are three options:
1. ’brake’: the motor brakes
2. ’Holdbrake’: the motor brakes, and then holds the brakes
3. ’coast’ the motor stops moving, but there is no braking

motorA.ActionAtTachoLimit=’coast’;

TachoLimit
Determines how far the motor will turn

motorA.TachoLimit= 360; % input is in terms of degrees

Alternative Motor Initiation
Motors can also be created this way:

motorA=NXTMotor(’a’, ’Power’, 50, ’TachoLimit’, 360);

4.2.4 Other Motor Commands

SendToNXT
This is required to send the settings of the motor to the robot so the motors will actually
run.

motorA.SendToNXT();

Stop
Stops the motor. There are two ways to do this:
1. ’off’ will turn off the motor, letting it come to rest by coasting.
2. ’brake’ will turn cause the motor to be stopped by braking, however the motors will
need to be turned off after the braking.

motorA.Stop(’off’);

ReadFromNXT();
Returns a list of information pertaining to a motor

Basic robotics with LEGO NXT52 |

motorA.ReadFromNXT();
Entering motorA.ReadFromNXT.Position(); will return the position of the motor
in degrees.

ResetPosition
Resets the position of the motor back to 0

motorA.ResetPosition();

WaitFor
Program will wait for motor to finish current command. For example:

motorA=(’a’, ’Power’, 30, ’TachoLimit’, 360);
motorA.SendToNXT();
motorA.SendToNXT();

This command will cause problems as the motor can only process one command at a
time. Instead, the following should be entered:

motorA=(’a’, ’Power’, 30, ’TachoLimit’, 360)
motorA.SendToNXT();
motorA.WaitFor();
motorA.SendToNXT();

The exception to this is if TachoLimit of the motor is set to 0.

4.2.5 Using Two Motors At Once

Some operations, for example driving forward and backwards, require the simultaneous

use of two motors. Entering:

B=NXTMotor(’b’, ’Power’, 50, ’TachoLimit’, 360);
C=NXTMotor(’c’, ’Power’, 50, ’TachoLimit’, 360);
B.SendToNXT();
C.SendToNXT();

will start the bot moving, but the signals for both motors to start at will not be sent at
exactly the same time, so the robot will curve a little and fail to drive in a straight line.
Instead, you should enter:

BC=NXTMotor(’bc’, ’Power’, 50, ’TachoLimit’, 360);

OR

BC = NXTMotor(’bc);
BC.Power=50;
BC.TachoLimit=360;

Turning left or right can be achieved by only running one motor at a time, or by moving
both motors, but one slower than the other.

| 53Basic MATLAB NXT toolbox commands

4.2.6 Sensors
The following commands are used to open a sensor, plugged into port 1:

OpenSwitch(SENSOR 1); % initiates touch sensor
OpenSound(SENSOR 1, ’DB’); % initiates sound sensor, using

% either ’DB’ or ’DBA’
OpenLight(SENSOR 1, ’ACTIVE’); % initiates light sensor as

% either’ACTIVE’ or ’INACTIVE’,
% plugged into Port 1

OpenUltrasonic(SENSOR 1); % initiates ultrasonic sensor
% plugged into Port 1

The following com-

mands are used to get values from the sensor plugged into port 2:

GetSwitch(SENSOR 2); % returns 1 if pressed, 0 if depressed
GetSound(SENSOR 2); % returns a value ranging from 0-1023
GetLight(SENSOR 2); % returns a value ranging from 0 to

% a few thousand
GetUltrasonic(SENSOR 2); % returns a value in cm

To close a sensor, ex. Sensor 1:

CloseSensor(SENSOR 1); %properly closes the sensor

4.2.7 Direct NXT Commands
PlayTone
Plays a tone at a specified frequency for a specified amount of time

NXT PlayTone(400,300); % Plays a tone at 400Hz for 300 ms

KeepAlive
Send this command every once in a while to prevent the robot from going into sleep
mode:

NXT SendKeepAlive(’dontreply’);

Send this command to see how long the robot will stay awake, in milliseconds:

[status SleepTimeLimit] = NXT SendKeepAlive(’reply’);

GetBatteryLevel
Returns the voltage left in the battery in millivolts

NXT GetBatteryLevel;

StartProgram/StopProgram

Basic robotics with LEGO NXT54 |

To run programs written on LEGO Mindstorms NXT software, enter:
NXT StartProgram(’MyDemo.rxe’) % the file extension ’.rxe’ can be

% omitted, it will then be automatically
% added

Entering NXT StopProgram stops the program mid-run.

4.3 First examples

The following exercises are intended to explore how to use RWTH’s Mindstorms NXT
Toolbox.

4.3.1 Example 1: Wall avoidance

The following is a simple example of how to drive a robot and use the ultrasonic sensor.
The robot will drive forward until it is around 20 cm away from a barrier (i.e. a wall),
stop, beep, turn right, and continue moving forward. The robot will repeat this 5 times.
Attach the Ultrasonic sensor and connect it to port 1. The study and run the following
program.

| 55First examples

COM CloseNXT(’all’); %cleans up workspace
close all;
clear all;
hNXT=COM OpenNXT(); % initiates NXT, hNXT is an arbitrary name
COM SetDefaultNXT(hNXT); %sets default handle

OpenUltrasonic(SENSOR 1);

forward=NXTMotor(’BC’;); &% setting motors B C to drive forward
forward.Power=50;
forward.TachoLimit=0;
turnRight=NXTMotor(’B’); &% setting motor B to turn right
turnRight.Power=50;
turnRight.TachoLimit=360;
for i= 1:5

while GetUltrasonic(SENSOR 1)>20
forward.SendToNXT(); %sends command for robot to move forward

%TachoLimit=0; no need for a WaitFor() statement
end %while
forward.Stop(’brake’); %robot brakes from going forward
NXT PlayTone(400,300); %plays a note
turnRight.SendToNXT; %sends the command to turn right
turnRight.WaitFor; %TachoLimit is not 0; WaitFor() statement required

end %for
turnRight.Stop(’off’); %properly closes motors
forward.Stop(’off’);
CloseSensor(SENSOR 1); %properly closes the sensor
COM CloseNXT(hNXT); % properly closes the NXT
close all;
clear all;

4.3.2 Example 2: Line following

The next exercise is writing your own program that uses readings from its light sensor
to drive the NXT and follow a line.

Setup:

Basic robotics with LEGO NXT56 |

1. Mount light sensor, facing downwards on front of NXT and plugged into Port 3.
2. Mount a switch sensor on the NXT, plugged into Port 2.
3. Use a piece of dark tape (i.e. electrical tape) to mark a track on a flat, light

coloured surface. Make sure the tape and the surface are coloured differently
enough that the light sensor returns reasonably different values between the two
surfaces.

4. Write a program so that the tribot follows the line.

4.4 Classical control theory

4.4.1 Inverse plant dynamics and feedback control

In this section we discuss control systems that are at the brains of robots. Control
systems are necessary to guide actions in an uncertain environment. The principle idea
of a control system is to use sensory and motivational information to produce goal
directed behavior.

A control system is characterized by a control plant and contoller. A control plant
is the dynamical object that should be controlled, such as a robot arm. The state of this
object is described by a state vector

zT (t) = (1,x(t),x(1)(t),x(2)(t),), (4.1)

where x(t) are basic coordinates such as the positions on a plane for a land-based
robot and its heading direction at a particular time. We also included a constant part in
the description of the plant, as well as higher derivatives by writing the i-th derivative
as x(i)(t).

The state of the plant is influenced by a control commandu(t). A control command
can be, for example, sending a specific current to motors, or the initiation of some
sequences of inputs to the robot. The effect of a control command u(t) when the plant
is in state z(t) is given by the plant equation

z(t+ 1) = f(z(t),u(t)), (4.2)

Learning the plant function f will be an important point in adaptive control discussed
later, and we will discuss some examples below.

The control problem is to find the appropriate commands to reach desired states
z∗(t). We assume for now that this desired state is a specific point in the state space,
also called setpoint. Such a control problem with a single desired state is called . The
control problem is called tracking if the desired state is changing. In an ideal situation
we might be able to calculate the appropriate control commands. For example, if the
plant is linear in the control commands, that is, if f has the form

z(t+ 1) = f(z(t),u(t)), (4.3)

and g has an inverse, then it is possible to calculate the command to reach the desired
state as

u∗ = f−1(z)z∗. (4.4)
A block diagram of this strategy which shows the controller and plant is shown in
Figure 4.2.

| 57Classical control theory

!"#$%"&&'%z : desired
 state

(&)#$u: control
command

z: actual
 state

Fig. 4.2 The elements of a basic control system.

As an example, let us consider the tribot moving a specified distance from a starting
point. Let u = t be the motor command for the Tribot to move forward for t seconds
with a certain motor power. If the tribot moves a distance of d1 in one second, then we
expect the tribot to move a distance of d ∗ t in t seconds. The plant equation for this
tribot movement is hence

x = x0 + d ∗ t, (4.5)

To find out the parameter d we can mark the initial location of the tribot and let
it run for 1 second. The parameter can then be determined from the end location
x by d = (x − x0)/t. Note that we learned a parameter from measurement in the
environment. This is at the heart of machine learning and the formula is already
learning algorithm.

In the next experiment want the robot to move from a start position to a desired
position of 60cm away. Ideally this could be achieved by letting the motor run by
t = 60/d seconds. Try it out. While the tribot might come close to the desired state,
a perfect match is not likely. There are several reasons for such failures. One is that
our measurement of the dynamics might be not accurate enough. We also made the
assumption that the rotations of the wheels are linear in time, but it might be that the
wheels slow down after a while due to power loss or heating of the gears which alter
physical properties, etc. And most of all, disturbances in the environment can through
the robot off track (such as a mean instructor). All these influences on the controlled
object are indicated in the figure by a disturbance signal to the plant.

!"#$%"&&'%z : desired
 state

(&)#$ *'#+"%+u: control
command

z: actual
 state,

Afferent

Disturbance

e: motor
 error

Fig. 4.3 The elements of a basic control system with negative feedback.

Of course, if we do not reach the desired state we can initiate a new movement to
compensate for the discrepancy between the desired and actual state of the controlled
object. For this we need a measurement of the new position (which actually might also

Basic robotics with LEGO NXT58 |

contain some error) from which we can calculate the new desired distance to travel.
We call the distance between the desired location x∗ and the actual location x the
displacement error

e(t) = x
∗(t)− x(t) (4.6)

We can also iterate the procedure until the distance to the desired state is sufficiently
small. Such an controller is called a feedback controller and is shown in Fig. 4.3.
The desired state is the input to the system, and the controller uses the desired state
to determine the appropriate control command. The controller can be viewed as an
inverse plant model as it takes a state signal and produce the right command so that
the controlled object ends up in the desired state. The motor command thus causes a
new state of the object that we have labelled ‘actual state’ in Fig. 4.3. The actual state
is then measured by sensors and subtracted from the desired state. If the difference
is zero, the system has reached the desired state. If it is different than zero than this
difference is the new input to the control system to generate the correction move.

Exercise
Make the robot to move to a specific distance from a wall by using a feedback controller
with the ultrasonic sensor.

4.4.2 PID control

The negative feedback controller doe often work in minimizing the position error of
a robotic systems. However, the movement is often jerky and overshooting a setpoint.
There are simple additions of the basic feedback controller that will making the
reaching of a setpoint better. Here we discuss briefly a very common feedback controller
call PID coontroller for reasons that will become clear shortly.

The basic idea of a PID controller is to not only use the current error between
the desired state and estimated actual state, but to take some history into account. For
example, when the correction in each state takes a long time, that is, if the sum of
the errors is large, then we should make larger changes so that we reach the setpoint
faster. In a continuos system, the sum over the last errors becomes and integral. Such
a component in the controller should help to accelerate the reaching of the setpoint.
However, such a component can also increase overshooting an leads to cycles which
can even make the system unstable. To remedy this it is also common to take the
rate of change in the error into account. Such a term is corresponds to the derivative
in a continuos system. The name for a PID controller is actually the acronym for
Proportional, Integral and Derivative and is illustrated in figure ??

The motor command generated by a PID controller is given by

u(t) = kP e(t) + kI

�
e(t)dt+ kD

de(t)

dt
, (4.7)

where we have weighted each of the components with different constants. Appropriate
choices of these constants are often chosen by trial and error.

We have only scratched the surface of classical control theory at this point. In
order to make controllers robust and applicable for practical applications, many other

| 59Adaptive Controle

!"#$%&%'(z : desired
 state

)('"# *$"+,%+u: control
command

z: actual
 state-

Afferent

Disturbance

e: motor
 error

)%,.,%#/,"'(

0$%/1'#/1$

Fig. 4.4 The elements of a PID control system.

considerations have to be made. For example, we are often not only interested in
minimizing the motor error but actually minimizing a cost function such as minimizing
the time to reach a setpoint or to minimize the energy used to reach the setpoint.
Corresponding methods are the subject of optimal control theory. While we will not
follow classical optimal control theory here, we will come back to topic in the context
of reinforcement learning later in the course.

Another major problem for many applications is that the plant dynamic can change
over time and has to be estimated from data. This is subject of the area of adaptive
control to which we will return after introducing the main machine learning methods.

The control theory outlines so far has several other drawbacks in the computer
environment. In particular, it treats the feedback signal as the supreme knowledge not
taking in consideration that it can be wrong. For example, in the exercise above with
measured the distance to a wall to drive the tribot to a particular distance. If we put our
hand in between the wall and the tribot, the controller would treat our hand as the wall
and would try to adjust the position accordingly. A smarter controller might ask if this
is consistent with previous measurements and its movements it made lately. A smarter
controller could therefore benefit from internal models and an acknowledgement,
and corresponding probabilistic treatment, that the sensor information is not always
reliable. Even more, a smart controller should be able to learn from the environment
how to judge certain information. This will be the our main strategy to follow in this
course.

4.5 Adaptive Controle

In many cases we do not know the plant dynamics in a closed analytic form so that we
have to estimate the dynamics and approximate the inverse. Also, it is common that the
dynamics of the plant changes over time due to fatigue of the elements or disturbances
in the environment. A solution to these problems is to let the controller learn from the
data during operation.

The general idea is outlined in Figure ??. The controller knows already what input it
receives, but the new stage is that the controller receives feedback from the environment
from the sensor. This information is used to adapt the controller as indicated by the

Basic robotics with LEGO NXT60 |

!"#$%"&&'%z : desired
 state

(&)#$ *'#+"%+u: control
command

z: actual
 state,

Afferent

Disturbance

e: motor
 error

Fig. 4.5 Two advanced control systems which incorporate models for corrective adjustments in
the system. These models are trained with sensory feedback, which is indicated by the arrows
going through these components.

crossing arrow. General architectures of learning functions from examples corresponds
to supervised learning that will be covered in the next chapter.

Note that there are now two feedback loops, for previously discussed negative
feedback to initiate corrective movements, and the newly introduced feedback for
the adaptive control. The negative feedback is instantaneous and a low level reactive
system for motor control. The adaptive feedback often works on a larger time scale to
adapt the controller to slowly changing plants.

Two refined schemes for adaptive motor control with slow sensory feedback are
illustrated in Figs. 4.6. The first one employs some subsystems that mimic the dynamic
of the controlled object and the behaviour of the sensory system. These subsystems
are called forward models. If these models are good approximations of the real
systems they are modelling, then we can use the output of these systems, instead of the
slow sensory response, as feedback signal. The models have, of course, to be gauged
against the real system during ongoing learning. Thus, the sensory feedback is used
to change the behaviour of the forward model. The forward model, which is divided
into a dynamic and output component in the figure, influences the sensory feedback
to improve performance in the main control loop. This scheme works as long as the
changes in the systems that they mimic are much slower than the time scale of the
movement that is controlled.

The second scheme, shown in Fig. 4.6B, employs an inverse model instead of
the forward model in the previous scheme and is therefore called an inverse model
controller. The inverse model, which is incorporated as a side-loop to the standard
feedback controller, learns to correct the computation of the motor command generator.
The reason that this scheme works is similar to that for the previous example. The
sensory feedback can be used to make the inverse model controller more accurate
while it provides the necessary correction signals in time to be incorporated into the
motor command.

Exercise

Write a PID controller that let the tribot follow a wall. Experiment with different
control parameters and report your findings.

| 61Configuration space

!

"##$%$&'

!
(

)*+',%-.&/$

01%2.%3435&.6*/
4444444444613$7

01%2.%341,'8,'
44444444613$7

!
"##$%$&'

!(

)*+',%-.&/$

9&:$%+$
4613$7

A. The forward model controller

B. The inverse model controller

;1&'%177$% <7.&' =$&+1%+

;1&'%177$% <7.&' =$&+1%+

>4?43$+*%$3
44444+'.'$

,?4/1&'%17
4444/166.&3

>?4./',.7
4444+'.'$

>4?43$+*%$3
44444+'.'$

,?4/1&'%17
4/166.&3

>?4./',.7
4444+'.'$

Fig. 4.6 Two advanced control systems which incorporate models for corrective adjustments in
the system. These models are trained with sensory feedback, which is indicated by the arrows
going through these components.

4.6 Configuration space

Very important for most algorithms to control a robot is the description of its state or the
possible states of the system. The physical state of an agent can be quite complicated.
For example, the Lego components of the tribot can have different positions and can
shift in operation; the battery will have different levels of charge during the day,
lightening conditions change, etc. Thus, description of the physical state would need a
lot of variables, and such a description space would be very high dimensional, which is
one important source of the computational challenges we face. To manage this problem
we need to consider abstractions.

Abstraction is an important concept in computer science and science in general.
To abstract means to simplify the system in a way that it can be described in as
simple terms as possible to answer the specific questions under consideration. This
philosophy is sometimes called the principle of parsimony, also known as Occam’s
razor. Basically, we want a model as simple as possible, while still capturing the main

Basic robotics with LEGO NXT62 |

aspects of the system that the model should capture.
For example, let us consider a robot that should navigate around some obstacles

from point A to point B as shown in Fig.4.7A. The simplifications we make in the
following is that we take consider the movement in only in a two-dimensional (2D)
plane. The robot will have a position described by an x and y coordinate, and a heading
direction described by an angle α. Note that we ignore for now the physical extension
of the robot, that is, we consider it here only as a point object. If this is a problem,
we can add an extension parameter later. We also ignore many of the other physical
parameters mention above. The current state of robot is hence described by three real
numbers, [x, y,α], and the space of all possible values is called the configuration
space or state space. An obstacle, as shown in Fig.4.7A with the grey area, can be
represented as state values that are not allowed by the system.

A

B

A

B

A. Navigation with obstracle B. Discrete con!guration space

Fig. 4.7 (A) A physical space with obstacles in which an agent should navigate from point A to
point B. (B) Descretized configuration space.

We have reduced the description of an robot navigation system from a nearly
infinite physical space to a three-dimensional (3D) configuration space by the process
of abstraction. However, there are still an infinite number of possible states in the state
space if the state variables are real numbers. We will shortly see that we have often
to search the state space, and an infinite space then often becomes problematic. A
common solution to this problem is to make further abstractions and to allow the state
variables to have only a finite number of states. Thus, we commonly discretize the
state space. An example is shown in Fig.4.7B, where we used a grid to represent the
possible values of the robot positions. Such a discretization is very useful in practice,
and we can also make the discretization error increasingly small by decreasing the grid
parameter, ∆x, which describes the minimal distance between two states. We will use
this grid discretization for planing a path through the configuration space later in this
chapter.

4.6.1 Robot Arm State Space Visualizer
The goal of the following exercise is to graph the state space in which a double jointed
robot arm is able to move. To do this, use two motors of the NXT Lego kit as joins of
this arm, similarly to the one pictured in Fig.4.8. Also attach a touch sensor that we
will use as a button in the following. Secure it on the table so that you can move its
pointing finger around by turning the externally moving the motors. We will use the

| 63Configuration space

ability of measuring this movement in the motors by the Lego system. Also, use a box,
a coffee mug or some other items to create some obstacles for the arm to move around.

Fig. 4.8 (A) Robot arm with two joints. (B)

Use the Matlab program in Table 4.1 to visualize the state space. Start the Matlab
program with the robot arm touching one of the obstacles. Then move the arm all
around one of the obstacles. This will allow the NXT to create set of data that will
display which combinations of angles cannot be travelled through by the robot arm. To
map more than one obstacle without mapping the angles in between the two obstacles,
push the button. The button pauses the program for 4 seconds so that you can move
the arm from one obstacle to the next without mapping the angles in between the two.

4.6.2 Exercise

1. Write a program that produces a map of the state space in form of a matrix which
has zeros of entries that can be reached and ones as entries for states that have
obstacles in it.

Basic robotics with LEGO NXT64 |
Table 4.1 State space visualization program

for counter = 1:10000
%The angles for both wheels are read
bottomDeg=bottom.ReadFromNXT.Position;
topDeg=top.ReadFromNXT.Position;
%the angles are then stored in angleWheel
angleWheel(1,counter)=bottomDeg;
angleWheel(2,counter)=topDeg;
%This plot will show all the angles read from the
%wheels, because hold is on
plot(topDeg,bottomDeg,’o’);
%If the switch is pushed then pause the angle reader
if GetSwitch(SENSOR_1)==1

disp(’paused’);
pause(4);
disp(’unpaused’);

end
end

4.7 Planning as search

Planing a movement is basic requirement in robotics. In particular, we want to find
the shortest path from a starting position to a goal position. The previous exercise
provides us with a map that we can use to plan the movement. One of the elements
of the array is dedicated as the starting position, and one as the goal position. We now
need to write a search algorithm that finds the shortest path.

There are many search algorithms that we could utilize for this task. For example,
a basic search algorithm is depth-first-search that choses a neighboring node, than
moves to the next, etc, until it reaches a goal. If the algorithm ends up in a dead-end,
than the algorithm tracks back to the last node with another options and goes down
this node. The breadth-first-search algorithms searches instead first if each of the
neighboring nodes of a current node is the goal state before advancing to the next
level. Of course, both need to keep track of which routs have been tried already to
ensure that we do not continuously try failed paths. These algorithms would sooner
or later find a path between the starting position and the goal if it exists since these
algorithms would try out all possible paths. However, these algorithms do not grantee
to find the shortest path, and these algorithms are also usually not so efficient.

To find better solutions we could take more information into account. For example,
in the grid world, we can use some distance measure between the current state and the
goal, such as the Euclidean distance

g(current) =
�
(xgoal − xcurrent)2 + (ygoal − ycurrent)2, (4.8)

| 65Planning as search

to guide the search5. That is, if we chose the next node to expand, we would chose
the node that has the smallest distance to the goal node. Such a heuristic search
algorithm is sometimes called a gready best-first search. Valid heuristics, which are
estimations of the expected cost that must not underestimate the real cost, can greatly
accelerate search performance. We can take such strategy a step further by also taken
into account in the cost of reaching the current state from the starting state,

h(current) =
�
(xstart − xcurrent)2 + (ystart − ycurrent)2, (4.9)

so that the total heuristic cost of node ‘current’ is

f(current) = h(current) + g(current). (4.10)

The algorithm that uses this heuristics while taking track of paths that are still ‘open’
or that are ‘closed’ since they lead to dead-ends, is called an A∗ star search algorithm.
An Matlab example and visualization of the A∗ search algorithm is provided on the
course web page.

4.7.1 Exercise: Robot Arm State Space Traversal

The goal of this exercise is to make the double jointed NXT arm progress through
the state space. You need the double-joined robot arm and the obstacles from the state
space visualization exercise above.

• Make a program which can move the arm from the starting coordinate to the
ending coordinate while avoiding the obstacles in the state space.

5This distance measure is also called the L2 norm. Other measures such as the Manhattan distance, the
Minkowski distance, or the L1 norm also frequently used.

Part III

Supervised learning

5 Regression and maximum likelihood

In the previous chapter we used some measurements to estimate a plant function for
the tribot when driving it forward with a certain power for different amounts of time.
This chapter starts a more thorough discussion of such learning problems, that of
supervised learning. We start by considering regression with noisy data and formalize
our learning objectives. Along the line we will also learn some useful techniques to
find extrema of a function and how to apply such methods to classification problems.

5.1 Regression of noisy data
An important type of learning is supervised learning. In supervised learning, examples
of input-output relations are given and our goal is to discover the relations between
these data so that we can make predictions of previously unseen data.

More formally, let us consider training data that are given to a learner by a teacher.
The training data are often denoted by the inputs x, such as motor commands, and
the outputs y, such as the reaction of a plant. In the following we consider m training
examples, the pairs of values

{(x(i)
, y

(i)); i = 1...m}. (5.1)

We use here an index counter i to label the different training examples. We use brackets
around it to distinguish it from an exponent. The above notation describes mapping
examples from a n dimensional input to a 1-dimensional output, hence the vector
notation for x and the scalar notation for y. The 1-dimensional output is mainly for
convenience as the generalization to a higher-dimensional output function only clutters
the notations slightly.

Let us use again consider the example of a tribot running forward for a certain
amount of time. In Figure 5.1 we show several measurements of the distance traveled
when both motors are driven forward with a certain amount of power for different
times in milliseconds. The shown data set is provided in file tribotPlantData.mat.
Looking at the plot reveals that there seems to be a systematic relation between the
time of running the motor and the distance traveled, and that this trend seems linear.
This hypothesis can be quantified as a parameterized function,

ĥ(x; θ) = θ1 + θ2x. (5.2)

This notation means that the hypothesis h is a function of the quantity x, and the
hypothesis includes all possible straight lines, where each line can have a different
offset θ1 (intercept with the y-axis), and slope θ2.

We typically collect parameters in a parameter vector θ. We only considered
on input variable x above, but we can easily generalize this to higher dimensional

Regression and maximum likelihood70 |

! " # $
!

%!

&!!

'()*

+
(,
-.
/0
*

Fig. 5.1 Measurements of distance travelled by the tribot when running the motor for different
number of milliseconds.

problems where more input attributes are given. For example, we could not only vary
the time the motor is running, but also vary the power with which we run the motor.
The corresponding 3-dimensional plot is shown in Figure 5.1. This variation of the
power also seem to have a linear effect on the distance traveled. To compress our
notations we will also use the convention that we consider a constant input in the first
component of the input vector,

x =

x1 = 1
x2

x3

 . (5.3)

We can write the hypothesis as

ĥ(x; θ) = θ1x1 + θ2x2 + θ3x3, (5.4)

or a linear hypothesis with n attributes as

ĥ(x; θ) = θ1x1 ++ θn+1xn+1 =
�

i

θixi = θ
Tx. (5.5)

The vector θT is the transpose of the vector θ.
Now we should remember that our goal was to learn the function that describes

these data. In the approach we have taken here we first made a hypothesis in form
of a parameterized function, h(x; θ), and the learning part boils down to determining
appropriate values for the parameters. After learning this function we can use it to
predict the reaction of the plant even for motor commands for which no training
examples were given. The remaining question is how we find appropriate values for
the parameters. However, before we do this we will also be more faithful to the data
and acknowledge fluctuation around our initial hypothesis.

5.2 Probabilistic models and maximum likelihood
So far, we have only modelled the mean trend of the data, and we should investigate
more the fluctuations around this mean trend. Fig.5.2 is a plot of the histogram of

| 71Probabilistic models and maximum likelihood

the differences between the actual data and the hypothesis regression line. This look

Remainder

Fig. 5.2 Histogram of the difference between the data points and the fitted hypothesis,
(yi − θ1 − θ2xi).

a bit Gaussian, which is likely to be a common finding though not necessarily the
only possible. With this additional conjecture, we should revise our hypothesis. More
precisely, we acknowledge that the data are noisy and that we can only give a probability
of finding certain values. Specifically, we assume here that the data follow a certain
trend, our previous deterministic hypothesis ĥ(x; θ) with additive noise, η,

h(x; θ) = ĥ(x; θ) + η, (5.6)

where the random variable η is Gaussian distributed in the example above,

p(η) = N(µ,σ) (5.7)

We can then also write the probabilistic hypothesis in the example as a Gaussian model
of the data distributed with a mean that depends on the variable x,

h(y|x; θ,σ) = N(µ = ĥ(x),σ) (5.8)

=
1√
2πσ

exp

�
− (y − θTx)2

2σ2

�
(5.9)

This functions specifies the probability of values for y, given an input x and the
parameters θ and σ.

Specifying a model with a density function is an important step in modern mod-
elling and machine learning. In this type of thinking, we treat data from the outset as
fundamentally stochastic, that is, data can be different even in situations that we deem
identical. This randomness may come from an irreducible indeterminacy, that is,
true randomness in the world that can not be penetrated by further knowledge, or this
noise might represent epistemological limitations such as the lack of knowledge of
hidden processes or limitations in observing states directly. The only important fact for
us is that we have to live with these limitations. This acknowledgement together with
the corresponding language of probability theory has helped to make large progress in
the machine learning area.

Regression and maximum likelihood72 |

We will no turn to the important principle that will guide our learning process which
corresponds here to estimating the parameters of the model. While the parameterized
hypothesis so far describes the form of the data, we need to estimate values for
the parameters to make real predictions. We therefore consider again the examples
for the input-output pairs, our training set {(x(i), y(i)); i = 1...m}. The important
principle that we will now follow is to choose the parameters so that the examples we
have are most likely. This is called maximum likelihood estimation. To formalize this
principle, we need to think about how to combine probabilities for several observations.
If the observations are independent, then the joined probability of several observations
is the product of the individual probabilities,

p(y1, y2,, ym|x1, x2, ..., xm; θ) = Πm
i p(yi|xi; θ). (5.10)

Note that yi are still random variables in the above formula. We now use our training
examples as specific observations for each of these random variables, and introduce
the Likelihood function

L(θ) = Πm
i h(θ; y(i), x(i)). (5.11)

The p on the right hand side is now not a density function, but it is a regular function
(with the same form as our parameterized hypothesis) of the parameters θ for the given
values y(i) and x(i). Instead of evaluating this large product, it is common to use the
logarithm of the likelihood function, so that we can use the sum over the training
examples,

l(θ) = logL(θ) =
m�

i

log(h(θ; y(i), x(i))). (5.12)

Since the log function strictly monotonly rising, the maximum ofL is also the maximum
of l. The maximum (log-)likelihood can thus be calculated from the examples as

θ
MLE = argmax

θ
l(θ). (5.13)

We might be able to calculate this analytically or use one of the search algorithms to
find a maximum from this function.

Let us apply this to the linear regression discussed above. The log-likelihood
function for this example is

l(θ) = logΠm
i=1

1√
2πσ

exp

�
−−(y(i) − θTx(i))2

2σ2

�
(5.14)

=
m�

i=1

�
log

1√
2πσ

− −(y(i) − θTx(i))2

2σ2

�
(5.15)

= −m

2
log 2πσ −

m�

i=1

−(y(i) − θTx(i))2

2σ2
. (5.16)

Thus, the log was chosen so that we can use the sum in the estimate instead of dealing
with big numbers based on the product of the examples.

| 73Maximum a posteriori estimates

Let us now consider the special case in which we assume that the constant σ, the
variance of the data, is the same for all x and thus has a fixed value given to us. We
can thus concentrate on the estimation of the other parameters θ. Since the first term in
the expression 5.16, −m

2 log 2πσ, is independent of θ, maximizing the log-likelihood
function is equivalent to minimizing a quadratic error term

E =
1

2
(y − h((x; (θ))2 ⇐⇒ p(y|x; θ) = 1√

2π
exp(− ((y − h((x; θ)2

2
) (5.17)

This error function or cost function was a frequently used criteria called Least Mean
Square (LSM) regression for parameters estimation when considering deterministic
hypothesis. I terms of our probabilistic view, the LSM regression is equivalent to MLE
for gaussian data with constant variance. When the variance is a free parameter, then
we need to minimize equation 5.16. instead.

We have discussed Gaussian distributed data in most of this section, but one can
similarly find correspondences error functions for other distributions. For example, a
polynomial error function correspond more generally to a density model of the form

E =
1

p
||y − h((x; (θ)||p ⇐⇒ p(y|x; θ) = 1

2Γ(1/p)
exp(−||y − h((x; θ||p). (5.18)

Later we will specifically discuss and use the �-insensitive error function, where
errors less than a constant � do not contribute to the error measure, only errors above
this value,

E = ||y − h((x; (θ)||� ⇐⇒ p(y|x; θ) = p

2(1− �)
exp(−||y − h((x; θ||�). (5.19)

Since we already acknowledged that we do expect that data are noisy, it is somewhat
logical to not count some deviations form the expectation as errors. It also turns out
that this error function is much more robust than other error functions.

5.3 Maximum a posteriori estimates
In the maximum likelihood estimation we assumed that we have no prior knowledge of
the parameters θ. However, we sometimes might know which values of the parameters
are impossible or less likely. This prior knowledge can be summarized in the prior
distribution p(θ), and the next question is how to combine this prior knowledge in
the maximum likelihood scheme. Combining prior knowledge with some evidence is
described by Bayes’ theorem. Thus, let us consider again that we have some observa-
tions (x, y) from specific realizations of the parameters, which is given by (p(x, y|θ),
and the prior about the possible values of the parameters, given by p(θ). The prior
is in this situation sometimes called the regularizer, restricting possible values in a
specific domain. We want to know the distribution of parameters given the observation,
p(θ|x, y), which can be calculated from Bayes’s theorem,

p(θ|x, y) = p(x, y|θ)p(θ)�
θ∈Θ p(x, y|θ)p(θ)dθ

, (5.20)

whereΘ is the domain of the possible parameter values. We can now use this expression
to estimate the most likely values for the parameters. For this we should notice that the

Regression and maximum likelihood74 |

denominator, which is called the partition function, does not depend on the parameters
θ. The most likely values for the parameters can thus be calculated without this term
and is given by the maximum a posteriori (MAP) estimate,

θ
MAP = argmax

θ
p(x, y|θ)p(θ). (5.21)

This is, in a Bayesian sense, the most likely value for the parameters, where, of course,
we now treat the probability function as a function of the parameters (e.g., a likelihood
function).

A final caution: ML and MAP estimates give us a point estimate, a single answer
of the most likely values of the parameters. This is often useful as a first guess and is
commonly used to make decisions about which actions to take. However, it is possible
that other sets of parameters values might have only a little smaller likelihood value,
and should therefore also be considered. Thus, one limit of the estimation methods
discussed here is that they do not take distribution of answers into account, which is
more common in more advanced Bayesian methods.

5.4 Minimization procedures

We have discussed the important principle of maximum likelihood estimation to learn
parameters from data so that the data are most likely under our hypothesis. This
principle tells us how to use the training examples to come-up with some reasonable
values for the parameters. Tho execute these principles we have to find the maximize
of a (log)likelihood function or minimize a corresponding cost functions such as LMS
to determine those parameters.

In this technique we chose values for θ that will minimize the sum of the mean
square error (MSE) from the line to each data point. In general we consider a cost
function to be minimized, which is in this case the square function

E(θ) =
1

2
(y − h(x; θ))2 (5.22)

≈ 1

2m

�

i

(y(i) − h(x(i); θ))2. (5.23)

Note that the objective function is a function of the parameters. Also, there is a
small subtlety in the above equation since we wrote the general form of the objective
function in line 5.22 and considered its approximation with the data, considered to be
independent, in line 5.23. With this objective function, we reduced the learning problem
to a search problem of finding the parameter values that minimize this objective
function,

θ = argmin
θ

E(θ) (5.24)

We will demonstrate practical solutions to this search problem with three important
methods. The first method is an analytical one. You might remember from basic
mathematics classes that finding a minimum of a function f(x) is characterized by

| 75Gradient Descent

df
dx = 0, and d2f

dx2 > 0. Here we have a vector function since the cost function depends
an several parameters. The derivative then becomes a gradient

∇θE(θ) =

∂E
∂θ0
.

.

.
∂E
∂θn

. (5.25)

It is useful to collect the training data in a large matrix for the x values, and a vector
for the y values,

X =
�
x(1)

... x(m)
�

Y =
�
y
(1)

... y
(m)

�
. (5.26)

We can then write the cost function as

E(θ) =
1

2m
(Y −Xθ)(Y −Xθ)T , (5.27)

The parameters for which the gradient is zero is then given by the normal equation

θ = (XX
T)−1

XY
T
. (5.28)

We have still to make sure these parameters are the minimum and a maximum value,
but this can easily be done and is also obvious when plotting the result.

The above analytic method is optimal in the requirement of computational time.
However, it requires that we can analytically solve an equation system. This was easy
in the linear case but fails for more complex functions. The next methods are more
widely applicable.

The second method we mainly mention for illustrative reasons is random search.
This is a very simple algorithm, but worthwhile considering to compare them to the
other solutions. In this algorithm, a new random values for the parameters are tried,
and these new parameters replace the old ones if the new values result in a smaller
error value (see Matlab code in Tab.5.3). The benefit of this method is that it can be
applied to any function, but in practice it takes much too long to find a solution.

5.5 Gradient Descent

The final method discussed here for finding a minimum of a function E(θ) is Gradient
Descent. This method will often be used in the following and it will thus be reviewed
here in more detail.

Gradient Descent starts at some initial value for the parameters, θ, and improves
the values iteratively by making changes to the parameters along the negative gradient
of the cost function,

θ ← θ − α∇θE(θ). (5.29)

The constant α is called a learning rate. The principle idea behind this method is
illustrated for a general cost function with one parameter in Fig.5.4.

Regression and maximum likelihood76 |
Table 5.1 Program randomSearch.m

%% Linear regression with random search
clear; clf; hold on;

load healthData;
E=1000000;
for trial=1:100

thetaNew=[100*rand()+50, 3*rand()];
Enew=0.5*sum((y-(thetaNew(1)+thetaNew(2)*x)).^2);
if Enew<E; E=Enew; theta=thetaNew; end

end

plot(x,y,’*’)
plot(120:260,theta(1)+theta(2)*(120:260))
xlabel(’weight (pounds)’)
ylabel(’time of one-mile run (seconds)’)

!"" !#" $"" $#" %""$#"

%""

%#"

&""

&#"

#""

'()*+,-./012345

Fig. 5.3 Health data with linear least-mean-square (LMS) regression from random search.

The gradient is simple the slope (local derivative) for a function with one variable,
but with functions in higher dimensions (more variables), the gradient is the local
slope along the direction of the steepest accent, and since we are interested here in
minimizing the cost function we make changes along the negative gradient. For large
gradients, this method takes large steps, whereas the effective step-width becomes
smaller near a minimum. Gradient descent works often well for local optimization, but
it can get stuck in local minima. The corresponding update rule in case of the LMS
error function,

E(θ) =
1

2m

m�

i=1

�
y
(i) − h(x(i); θ)

�2
, (5.30)

with a general hypothesis function h(x(i); θ) is given by

| 77Gradient Descent

!" #

Fig. 5.4 Illustration of error minimization with a gradient descent method on a one-dimensional
error surface E(θ).

θk ← θk − α

m

m�

i=1

(y(i) − h(x(i); θ))
∂h(θ)

∂θk
. (5.31)

For a linear regression function, the update rule for the two parameters θ0 and θ1

are therefore:

h(x(i); θ) = θ0 + θ1x
(i) (5.32)

θ0 ← θ0 − α
∂E(θ)

∂θ0
(5.33)

θ1 ← θ1 − α
∂E(θ)

∂θ1
(5.34)

∂E(θ)

∂θ0
=

1

m

m�

i=1

(y(i) − θ0 − θ1x
(i))(−1) (5.35)

∂E(θ)

∂θ1
=

1

m

m�

i=1

(y(i) − θ0 − θ1x
(i))(−x

(i)), (5.36)

which lead to the final rule:

θ0 ← θ0 +
α

m

m�

i=1

(yi − θ0 − θ1xi) (5.37)

θ1 ← θ1 +
α

m

m�

i=1

(yi − θ0 − θ1xi)xi. (5.38)

Note that the learning rate α has to be chosen small enough for the algorithm to
converge. An example is show in Fig.5.5, where the dashed line shows the initial
hypothesis, and the solid line the solution after 100 updates.

In the algorithm above we calculate the average gradient over all examples before
updating the parameters. This is called a batch algorithm or synchronous update
since the whole batch of training data is used for each updating step and the update
is only made after seeing all training data. This might be problematic in some appli-
cations as the training examples have to be stored somewhere and have to be recalled
continuously. A much more applicable methods, also thought to be more biological
realistic, is to use each training example when it comes in and disregards it right after.
In this way we do not have to store all the data. Such algorithms are called online algo-
rithms or asynchronous update. Specifically, in the example above, we calculate the

Regression and maximum likelihood78 |

!"" !#" $"" $#" %""$""

&""

'""

(""

!"""

)*+,-./01234567

Fig. 5.5 Health data with linear least-mean-square (LMS) regression with gradient descent. The
dashed line shows the initial hypothesis, and the solid line the solution after 100 updates.

change for each training examples and update the parameters for this training example
before moving to the next example. While we might have to run through the short list
of training examples in this specific example, it can still be considered online since we
need only one training example at each training step and a list could be supplied to us
externally. There are also variations of this algorithms depending on the order we use
the training examples (e.g. random or sequential), although this should not be crucial
in for the examples discussed here.

5.5.1 LinearRegressionExampleCode

%% Linear regression with gradient descent
clear all; clc; hold on;

load SampleRegressionData; m=50; alpha=0.001;
theta1=rand*100*((rand<0.5)*2-1);
theta2=rand*100*((rand<0.5)*2-1);

for trial=1:50000
sum1 = sum(y - theta1 - theta2 *x);
sum2 = sum((y - theta1 - theta2 *x).* x);
theta1 = theta1 + (2*alpha/m) * sum1;
theta2 = theta2 + (2*alpha/m) * sum2;
sum1 = 0; sum2 = 0;

end

plot(x, y, ’*’);
plot(x, x*theta2+theta1);
hold off;

| 79Gradient Descent

A final remark: We have used in this section the popular cost function MSE to
calculate the regression in the above example, but it is interesting to think about this
choice a bit more. If we change this function, then we would value outliers in a
different way. The MSE is a quadratic function and does therefore weight heavily
large deviations from the regression curve. An alternative approach would be to say
that these might be outliers to which we should not give so much weight. In this case
we might want that the increase of the error value decrease with large distances, for
example by using the logarithm function log(|y − h|) as cost (error) function. So, the
MSE is certainly not the only choice. We will see below that there is a natural choice
for cost functions if we take the stochastic nature of the data into account.

5.5.2 Calibrating state estimator with linear regression

One of the basic requirements for a robot or agent is to estimate the state it is in
such as its position in space. In this tutorial we will use the color sensor and a floor
with different shades of gray to help the robot to determine its position on a surface.
Specifically, we use a sheet of gray bars of various gradients that is given in file
StateSheet.pdf. The NXT can read this model as each gray bar will give a different
light reading when the its light sensor is held over it. However, we need to pair each
light reading with a number which represents the state value. Of course, the reading of
the light sensors will fluctuate somewhat, we would like to repeat the measurements
and find a function that translates each light reading to a state value.

To set up the tribot for this experiment, do the following:

1. Mount a switch sensors on the NXT.
2. Mount light sensor on front of the NXT, facing downward.
3. Because the state space used in this tutorial only involves driving forward and

backward, it is a good idea to use additional lego pieces to lock the back wheel
so it stays straight. If it is left to freely rotate, the NXT will start to turn and
travel off the state sheet which will interfere with results.

Regression and maximum likelihood80 |

4. Tape the state sheet to a table or other flat surface.
5. Setup an NXT motor object that will drive the robot foward in a straight line.

Power should be between 20-30, TachoLimit around 20; motors should brake
once it reaches the TachoLimit.

6. Create two matricies, one for light readings (from the NXT’s light sensor), and
the other for states. They must be the same size.

7. Have the NXT move forward, take a light reading from its sensor, and store it in
the light reading matrix. The user should then be prompted to input which state
the NXT is in. Store this value in the state matrix. Repeat this until you have a
few readings from every state on the state sheet.

8. Using one of the methods discussed above, use linear regression to find a linear
relationship between the light reading matrix and its associated state.

3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6

7

8
Light Readings vs. State

Light Reading (x102)

S
ta

te

9. Test the data. Have the NXT take in a light sensor reading, and using the regressed
line, interpolate the state and a round function to round the value to the nearest
whole number). Does the regressed value give the correct state?

The state sheet will be used in chapter ?? when experimenting with reinforcement
learning.

5.6 Non-linear regression and the bias-variance tradeoff

So far we only discussed the case where our hypothesis in linear in the feature values.
We will now discuss regression with more general non-linear functions. As an example
of data that do not seem to follow a linear trend is shown in Fig.5.6A. There, the
number of transistors of microprocessors is plotted against the year each processor
was introduced. We included a linear fit to show that this does not seem describe the
data well. Indeed, there seem to be systematic bias that suggest that we have to take
more complex functions into account.

xxx Example of polynomial regression!
Finding the right function is one of the most difficult tasks, and there is not a

simple algorithm that can give us the answer. This task is therefore an important
area where experience, a good understanding of the problem domain, and a good

| 81Non-linear regression and the bias-variance tradeoff

!"#$!"%$!""$ &$$$ &$!$

$

!

&

'(!$"

)*+,(-.(/01,-2341/-0

5-
67
8
39

:*
,(-
.(1
,+
0;
/;
1-
,;
<

!"#$!"%$!""$ &$$$ &$!$

!$

&$

)*+,(-.(/01,-2341/-0

5-
67
8
39

:*
,(-
.(1
,+
0;
/;
1-
,;
<

A. Processor data B. Logarithm of processor data

n=10

n=2
n=4

Fig. 5.6 Data from showing the number of transistors in microprocessors plotted the year that the
processor was introduced. (A) Data and some linear and polynomial fits of the data. (B) Logarithm
of the data and linear fit of these data.

understanding of scientific methods are required. This section does therefore try to
give some recommendations when generalizing regression to the non-linear domain.
These comments are important to understand for applying machine learning techniques
in general.

It is often a good idea to visualize data an various ways since the human mind is
often quite advanced in ‘seeing’ trends and patterns. Domain-knowledge thereby very
valuable as specialists in the area from which the data are collected can give important
advice of or they might have specific hypothesis that can be investigated. It is also
good to know common mechanisms that might influence processes. For example, the
rate of change in basic growth processes is often proportional to the size of the system
itself. Such an situation lead to exponential growth. (Think about why this is the case).
Such situations can be revealed by plotting the functions on a logarithmic scale or
the logarithm of the function as shown in Fig.5.6B. A linear fit of the logarithmic
values is also shown, confirming that the average growth of the number of transistors
in microprocessors is exponential.

But how about more general functions. For example, we can consider a polynomial
of order n, that can be written as

y = θ0x
0 + θ1x

1 + θ2x
2 + ...+ θnx

n (5.39)

We can again use LMS regression to determine the parameters from the data by miniz-
ing the LMS error function between the hypothesis and the data. This is implemented
in Matlab as function polyfit(x,y,n0). The LMS regression of the transistor data
to a polynomials for orders n = 2, 4, 10 are shown in Fig.??A as dashed lines.

A major question when fitting data with fairly general non-linear functions is the
order that we should consider. The polynomial of order n = 4 seem to somewhat fit
the data. However, notice there are systematic deviations between the curve and the
data points. For example, all the data between years 1980 and 1995 are below the
fitted curve, while earlier data are all above the fitted curve. Such a systematic bias is
typical when the order of the model is too low. However when we increase the order,
then we usually get large fluctuations, or variance, in the curves. This fact is also

Regression and maximum likelihood82 |

called overfitting the data since we have typically too many parameters compared to
the number of data points so that our model starts describing individual data points
with their fluctuations that we earlier assumed to be due to some noise in the system.
This difficulty to find the right balance between these two effects is also called the
bias-variance tradeoff.

The bias-variance tradeoff is quite important in practical applications of machine
learning because the complexity of the underlying problem is often not know. It then
becomes quite important to study the performance of the learned solutions in some
detail. For this it is useful to split the data set into training set, which is used to
estimate the parameters of the model, and a validation set that can be used to study
the performance on data that have not been used in the training procedure, that is, how
the machine performs in generalizes. A schematic figure showing the bias-variance
tradeoff is shown in Fig.5.7. The plot shows the error rate as evaluated by the training
data (dashed line) and validation curve (solid line) when considering models with
different complexities. When the model complexity is lower than the true complexity
of the problem, then it is common to have a large error both in the training set and
in the evaluation due to some systematic bias. In the case when the complexity of the
model is larger than the generative model of the data, then it is common to have a
small error on the training data but a large error on the generalization data since the
predictions are becoming too much focused on the individual examples. Thus varying
the complexity of the data, and performing experiments such as training the system
on different number of data sets or for different training parameters or iterations can
reveal some of the problems of the models.

Error on validation set

Error on test set

Model complexity

Er
ro

r

Fig. 5.7 Illustration of bias-variance tradeoff.

Using some of the data to validate the learning model is essential for many machine
learning methods. A important question is then how many data we should keep to
validate versus train the model. If we use too many data for validation, than we might
have too less data for accurate learning in the first place. On the other end, if we have
to few data for validation than this might not be very representative. In practice we are
often using some cross-validation techniques to minimize the trade-off. That is, we
use the majority of the data for training, but we repeat the selection of the validation
data several times to make sure that the validation was not just a result of outliers.

| 83Non-linear regression and the bias-variance tradeoff

The repeated division of the data into a training set and validation set can be done in
different ways. For example, in random subsampling we just use random subsample
for each set and repeat the procedure with other random samples. More common is
k-fold cross-validation. In this technique we divide the data set into k-subsamples
samples and use k−1 subsamples for training and one subsample for validation. In the
next round we use another subsample for validating the training. A common choice
for the number of subsamples is k = 10. By combining the results for the different
runs we can often reduce the variance of our prediction while utilizing most data for
learning.

We can sometimes even help the learning process further. In many learning exam-
ples it turns out that some data are easy to learn while others are much harder. In some
techniques called boosting, data which are hard to learn are over-sampled in the learn-
ing set so that the learning machine has more opportunities to learn these examples. A
popular implementation of such an algorithm is AdaBoost (adaptive Boosting).

Exercise

1. Compare the analytic solution to the numerical solutions of random search and
gradient descent search in the linear regression of the health data in section 5.1.

2. Is a linear fit of the logarithm of a function equal to an exponential fit of the
original function? Discuss.

3. Explain briefly how a binary classification method can be used to support mul-
ticlass classification of more than two classes.

6 Classification

This chapter follows closely: http://cs229.stanford.edu/notes/cs229-notes2.pdf

6.1 Logistic regression

An important special case of learning problems is classification in which features are
mapped to a finite number of possible categories. We discuss in this section binary
classification, which is the case of two target classes where the target function (y-
values) has only two possible values such as 0 and 1.

Let us first consider a random number which takes the value of 1 with probability
φ and the value 0 with probability 1 − φ (the probability of being either of the two
choices has to be 1.) Such a random variable is called Bernoulli distributed. Tossing a
coin is a good example of a process that generates a Bernolli random variable and we
can use maximum likelihood estimation to estimate the parameter φ from such trials.
That is, let us consider m tosses in which h heads have been found. The log-likelihood
of having h heads (y = 1) and 1− h tails (y = 0) is

l(φ) = log(φh(1− φ)m−h) (6.1)
= h log(φ) + (m− h) log(1− φ). (6.2)

To find the maximum with respect to φ we set the derivative of l to zero,

dl

dφ
=

h

φ
− m− h

1− φ
(6.3)

=
h

φ
− m− h

1− φ
(6.4)

= 0 (6.5)

→ φ =
h

m
(6.6)

As you might have expected, the maximum likelihood estimate of the parameter φ is
the fraction of heads in m trials.

Now let us discuss the case when the probability of observing a head or tail, the
parameter φ, depends on an attribute x, as usual in a stochastic (noisy) way. More
specifically,

h(y = 1|x; θ) = ĥ(x; θ) (6.7)

h(y = 0|x; θ) = 1− ĥ(x; θ) (6.8)

which we can combine as

| 85Logistic regression

h(y|x; θ) = (ĥ(x; θ))y(1− ĥ(x; θ))1−y (6.9)

The corresponding log-likelihood function is

l(θ) =
m�

i=1

y
(i)

log(ĥ(x; θ)) + (1− y
(i)) log(1− ĥ(x; θ)). (6.10)

To find the corresponding maximum we can use the gradient ascent algorithm, which
is equivalent to eq 5.5 with a changed sign,

θ ← θ + α∇θl(θ). (6.11)

To calculate the gradient we can calculate the partial derivative of the log-likelihood
function with respect to each parameters,

∂l(θ)

∂θj
=

�
y
1

ĥ
− (1− y)

1

1− ĥ

�
∂ĥ(θ)

∂θj
(6.12)

where we dropped indices for better readability.
An example is illustrated in Fig.6.1 with 100 examples plotted with star symbols.

The data suggest that it is far more likely that the class is y = 0 for small values of x
and that the class is y = 1 for large values of x, and the probabilities are more similar
in between. We put forward the hypothesis that the transition between the low and
high probability region is smooth and qualify this hypothesis as parameterized density
function known as a logistic or sigmoid function

ĥ = g(θTx) =
1

1 + exp(−θTx)
. (6.13)

As before, we can then treat this density function as function of the parameters θ for
the given data values (likelihood function), and use maximum likelihood estimation to
estimate values for the parameters so that the data are most likely. The density function
with sigmoidal offset θ0 = 2 and slope θ1 = 4 is plotted as solid line in Fig.6.1.

!
"

#

Fig. 6.1 Binary random numbers (stars) drawn from the density p(y = 1) = 1
1+exp(−θ1x−θ0)

(solid line).

Classification86 |

We can now calculate the derivative of the hypothesis ĥ with respect to the param-
eters for the specific choice of the logistic functions. This is given by

∂ĥ

∂θ
=

∂

∂θ

1

1 + e−θx
(6.14)

=
1

(1 + e−θx)2
e
−θx (6.15)

=
1

(1 + e−θx)
(1− 1

(1 + e−θx)
(6.16)

= ĥ(1− ĥ) (6.17)

Using this in equation 6.12 and inserting it into equation 6.11 give the learning rule

θj ← θj + α(y(i) − ĥ(x(i)
, θ)x(i)

j (6.18)

How can we use the knowledge (estimate) of the density function to do classifica-
tion? The obvious choice is to predict the class with the higher probability, given the
input attribute. This bayesian decision point, xt, or dividing hyperplane in higher
dimensions, is give by

p(y = 1|xt) = p(y = 0|xt) = 0.5 → x
t
θ
Txt = 0. (6.19)

We have here considered binary classification with linear decision boundaries as lo-
gistic regression, and we can also generalize this method to problems with non-linear
decision boundaries by considering hypothesis with different functional forms of the
decision boundary. However, coming up with specific functions for boundaries is of-
ten difficult in practice, and we will discuss much more practical methods for binary
classification later in this course.

6.2 Generative models

In the previous srctions we have introduced the idea that understanding the world should
be based on a model of the world in a probabilistic sense. That is, building knowledge
about the world really means estimating a large density function about the world. So far
we have used such stochastic model mainly for a recognition model that take feature
values x and make a prediction of an output y. Given the stochastic nature of the
systems we want to model, the models where formulated as parameterized functions
that represent the conditional probability p(y|x; θ). Of course, learning such models
is a big task. Indeed, we had to assume that we know already the principle form of
the distribution, and we used only simple model with low-dimensional feature vectors.
The learning tasks of humans to be able to function in the real world seems much
more daunting, and even training a robot in more restricted environment seems still
beyond our current ability. While the previous models illustrate the principle problem in
supervised learning, much of the rest of this course discusses more practical methods.

In the last section we discussed a classification task where the aim of the model was
to discriminate between classes based on the feature values. Such models are called

| 87Discriminant analysis

discriminative models because they try to discriminate between possible outcomes
based on the input values. Building a discriminative model directly from example
data can be a daunting task as we have to learn how each item is distinguished from
every other possible item. A different strategy, which seems much more resembling
human learning, is to learn first about the nature of specific classes and then use
this knowledge when faced with a classification task. For example, we might first
learn about chairs, and independently about tables, and when we are shown pictures
with different furnitures we can draw on our knowledge to classify them. Thus, in
this chapter we start discussing generative models of individual classes, given by
p(x|y; θ).

Generative models can be useful in its own right, and are also important to guide
learning as discussed later, but for now we are mainly interested in using these models
for classification. Thus, we need to ask how we can combine the knowledge about
the different classes to do classification. Of course, the answer is provided by Bayes’
theorem. In order to make a discriminative model from the generative models, we need
to the class priors know, e.g. what the relative frequencies of the classes is, and can
then calculate the probability that an item with features x belong to a class y as

p(y|x; θ) = p(x|y; θ)p(y)
p(x)

. (6.20)

We can use this directly in the case of classification. The Bayesian decision criterion
of predicting the class with the largest posterior probability is then:

argmax
y

p(y|x; θ) = argmax
y

p(x|y; θ)p(y)
p(x)

(6.21)

= argmax
y

p(x|y; θ)p(y), (6.22)

where we have used the fact that the denominator does not depend on y and can hence
be ignores. In the case of binary classification, this reads:

argmax
y

p(y|x; θ) = argmax
y

(p(x|y = 0; θ)p(y = 0) + p(x|y = 1; θ)p(y = 1).

(6.23)
While using generative models for classification seem to be much more elaborate, we
will see later that there are several arguments which make generative models attractive
for machine learning, and we will arue that generative models are do more closely
resemble human brain processing principles.

6.3 Discriminant analysis

We will now discuss some common examples of using generative models in classifi-
cation. The methods in this section go back to a paper by R. Fisher in 1936. In the
following examples we consider that there are k classes, and we first assume that
each class has members which are Gaussian distribution over the n feature value. An
example for n = 2 is shown in Fig.??A.

Classification88 |

!

!

"

!

!

"

#
A. Two Gaussians classes B. Gaussian and a non Gaussian class

Fig. 6.2 Linear Discriminant analysis on a two class problem with different class distributions.

Each of the classes have a certain class prior

p(y = k) = φk (6.24)

, and each class itself is multivariate Gaussian distributed, generally with different
means, µk and variances, Σk,

p(x|y = k) =
1

√
2π

n�|Σ0|
e
− 1

2 (x−µk)
TΣ−1

k (x−µk) (6.25)

(6.26)

Since we have supervised data with examples for each class, we can use maxi-
mum likelihood estimation to estimate the most likely values for the parameters
θ = (φk, µk,Σk). For the class priors, this is simply the relative frequency of the
training data,

φk =
1

m

m�

i=1

11(y(i) = k) (6.27)

where the function 11(y(i) = k) = 1 if the ith example belongs to class k, and
11(y(i) = k) = 0 otherwise. The estimates of the means and variances within each
class are given by

µk =

�m
i=1 11(y

(i) = k)x(i)

�m
i=1 11(y

(i) = k)
(6.28)

Σk =

�m
i=1 11(y

(i) = k)(x(i) − µy(i))(x(i) − µy(i))T�m
i=1 11(y

(i) = k)
. (6.29)

With these estimates, we can calculate the optimal (in a Bayesian sense) decision
rule, G(x; θ), as a function of x with parameters θ, namely

G(x) = argmax
k

p(y = k|x) (6.30)

| 89Discriminant analysis

= argmax
k

[p(x|y = k; θ)p(y = k)] (6.31)

= argmax
k

[log(p(x|y = k; θ)p(y = k))] (6.32)

= argmax
k

[−log(
√
2π

n�
|Σ0|)−

1

2
(x− µk)

TΣ−1
k (x− µk) + log(φk)](6.33)

= argmax
k

[−1

2
xTΣ−1

k x− 1

2
µ
T
kΣ

−1
k µk + xTΣ−1

k µk + log(φk)], (6.34)

since the first term in equation 6.33 does not depend on k and we can multiply out the
other terms. With the maximum likelihood estimates of the parameters, we have all
we need to make this decision.

In order to calculate the decision boundary between classes l and k, we make
the common additional assumption that the covariance matrices of the classes are the
same,

Σk =: Σ. (6.35)

The decision boundary is then

log(
φk

φl
)− 1

2
(µk − µl)

TΣ−1(µk − µl)− xΣ−1(µk − µl) = 0. (6.36)

The first two terms do not depend on x and can be summarized as constant a. We can
also introduce the vector

w = −Σ−1(µk − µl). (6.37)

With these simplifying notations is it easy to see that this decition boundary is a linear,

a+wx = 0, (6.38)

and this method with the Gaussian class distributions with equal variances is called
Linear Discriminant Analysis (LDA). The vector w is perpendicular to the decision
surface. Examples are shown in Figure ??. If we do not make the assumption of equal
variances of the classes, than we have a quadratic equation for the decision boundary,
and the method is then called Quadratic Discriminant Analysis (GDA). With the
assumptions of LDA, we can calculate the contrastive model directly using Bayes rule.

p(y = k|x; θ) =
φk

1√
2π

n
√

|Σ|
e−

1
2 (x−µk)

TΣ−1
k (x−µk)

φk
1√

2π
n
√

|Σ|
e−

1
2 (x−µk)TΣ−1

k (x−µk) + φl
1√

2π
n
√

|Σ|
e−

1
2 (x−µl)TΣ−1

l (x−µl)
(6.39)

=
1

1 + φl

φk
exp−θT x

, (6.40)

where θ is an appropriate function of the parametersµk,µl, andΣ. Thus, the contrastive
model is equivalent to logistic regression discussed in the previous chapter, although we
use parametrisations and the two methods will therefore usual give different results on
specific data sets. So which method should be used? In LDA we made the assumption
that each class is Gaussian distributed. If this is the case, then LDA is the best method
we can use. Discriminant analysis is also popular since it often works well even
when the classes are not strictly gaussian. However, as can be seen in Figure ??B,

Classification90 |

it can also produce quite bad results if the data are multimodal distributed. Logistic
regression is somewhat more general since it does not make the assumption that the
class distributions are Gaussian. However, so far we have mainly looked at linear
models and logistic regression would have also problems with the data shown in
Figure ??B.

Finally, we should nte that Fisher’s original method was slightly more general than
the examples discussed here since he did not assume Gaussian distributions. Instead
considered within-class variances compared to between-class variances, something
which resembles a signal-to-noise ratio. In Fisher discriminant analysis (FDA), the
separating hyperplane is defined as

w = −(Σk + Σl)
−1(µk − µl). (6.41)

which is the same as in LDA in the case of equal covariance matrices.

6.4 Naive Bayes
In the previous example we used mainly a two dimensional feature vector to discuss a
classification problems as generative model. We will give an example that has a much
higher dimensionality.

In the following example we want to make a spam filter that classifies email
messages as either spam (y = 1) or non-spam (y = 0) emails. To do this we need first
a method to represent the problem in a suitable way. We chose here to represent a text
(email in this situation) as vocabulary vector. A vocabulary is simply the list of all
possible words that we consider, and the text is represented by this vector with entries
1 if the word can be found in the list or an entry 0 if not, e.g.

x =

1
0
0
.

.

.

1
.

.

0

a
aardvark
aardwolf

.

.

.

buy
.

.

zygmurgy

(6.42)

We are here only considering values 0 and 1 instead, for example, counting how
often the corresponding word appears. The difference is that each entry is a binomial
random variable and would be a multinomial in the other example, though the methods
generalize directly to the other case. Note that this feature vector is typically very high
dimensional. Let us consider here that our vocabulary has 50.000 word, which is a
typical size of common languages.

We now want to build a discriminative model from some training examples. That
is, we want to model

p(x|y) = p(x1, x2, ..., x50000|y). (6.43)

| 91Naive Bayes

This is a very high dimensional density function which has 250.000−1 parameters (the
-1 comes from the normalization condition). We can factorize this conditional density
function with the chain rule

p(x1, x2, ..., x50000|y) = p(x1|y)p(x2|y, y1)...p(x50000|y, x1,, x49999). (6.44)

While the right hand side has only 50.000 factors, there are still 250.000−1 parameters
we have to learn. However, we no make a strong assumption namely that all the words
are conditionally independent in each text, that is,

p(x1|y)p(x2|y, y1)...p(x50000|y, x1,, x49999) = p(x1|y)p(x2|y)...p(x50000|y).
(6.45)

This is called the Naive Bayes (NB) assumption. Hence, we can write the conditional
probability as a factor of terms with 50.000 parameters

p(x|y) =
50000�

i=1

p(xi|y). (6.46)

To estimate these parameters we can apply again maximum likelihood estimation,
which gives

φj,y=1 =

�m
i=1 1{x

(i)
j = 1 ∧ y(i) = 1}

�m
i=1 1{y(i) = 1}

(6.47)

φj,y=0 =

�m
i=1 1{x

(i)
j = 1 ∧ y(i) = 0}

�m
i=1 1{y(i) = 0}

(6.48)

φy=1 =

�m
i=1 1{y(i) = 1}

m
. (6.49)

With these parameters we can now calculate the probability that email x is spam as

p(y = 1|x) =
�m

i=1 φi,y=1phiy=1�m
i=1 φi,y=1phiy = 1 +

�m
i=1 φi,y=1phiy = 1

. (6.50)

In practice this often works well when the Naive Bayes assumption is appropriate,
that is, if there are no strong correlation between the features. Finally, note that there
is a slight problem if some of the words, say x100, are not part of the training set. In
this case we get an estimate that the probability of this work every occurring is zero,
φ100,y=1 = 0 and φ100,y=0 = 0, and hence p(y = 1|x) = 0

0 . A common trick, called
Laplace smoothing is to ad one occurance of this word in every case, which will insert
a small probability proportional to your training examples to the estimates,

φj,y=1 =

�m
i=1 1{x

(i)
j = 1 ∧ y(i) = 1}+ 1

�m
i=1 1{y(i) = 1}+ 2

(6.51)

φj,y=0 =

�m
i=1 1{x

(i)
j = 1 ∧ y(i) = 0}+ 1

�m
i=1 1{y(i) = 0}+ 2

. (6.52)

We will later compare the Naive Bayes classification with other classification methods.

7 Graphical models

7.1 Causal models

In the regression example that looked at health data relating the weight of subjects
to running times, we considered the weight to be a random variable to capture the
uncertainties in the data. There we treated the running time as the dependent variable.
Since this is also a measured quantity, it should also be treated as random variable.
In general we should anyhow consider more complex models with many more factors
described as random variables, and we are most interested in describe the relations of
these variables in a model.

We have seen that probability theory is quite handy to model data, and probability
theory also considers multiple random variables. The total knowledge about the co-
occurance of specific values for two random variables X and Y is captured by the
joined probability function p(X,Y). This is a symmetric function,

p(X,Y) = p(Y,X), (7.1)

There is an interesting limitation of joined density functions of multiple variables
which only describe the co-occurance of specific values of the random variables.
However, we want to use our knowledge about the world, captured by a model, to
reason about possible events. For this we want to add knowledge or hypotheses about
causal relations. For example, a fire alarm should be triggered by a fire, although there
is some small chance that the alarm will not sound when the unit is defect. However,
it is (hopefully) unlikely that the sound of a fire alarm will trigger a fire. It is useful to
illustrate such casual relations with graphs such as

F A

In such graphical models, the nodes represent random variables, and the links between
them represent causal relations with conditional probabilities, p(A|F). Since we use
arrows on the links we are discussing here directed graphs, and we are also restricting
our discussions here to graphs that have no loops, so called acyclic graphs. Directed
acyclic graphs are also called DAGs.

Graphical causal models have been advanced largely by Judea Pearl, and the
following example is taken from his book6. The model is shown in Figure 7.1. Each of
the five nodes stands for a random binary variable (Burglary B={yes,no}, Earthquake
E={yes,no}, Alarm A={yes,no}, JohnCalls J={yes,no}, MaryCalls M={yes,no}) The
figure also include conditional probability tables (CPTs) that specify the conditional
probabilities represented by the links between the nodes.

6Judea Pearl, ‘Causality: Models, Reasoning and Inference’, Cambridge University Press 2000, 2009’.

| 93Causal models

!""#
!"#$

!""$
!"%$

!"#$%

&#$'()*#+,

-#$./#""012(3/#""0

4*$5"#$.

#
%
%
&
&

%
%
&
%
&

!'(

!$'
!""#

!')

!"&'#(%$

&
%
&

!'"
!"(

!")'&$ &
%
&

!*"
!"#

!"*'&$

Fig. 7.1 Example of causal model a two-dimensional probability density function (pdf) and some
examples of marginal pdfs.

The joined distribution of the five variables can be factories in various ways
following the chain rule mentioned before (equations 2.30), for example as

p(B,E,A, J,M) = P (B|E,A, J,M)P (E|A, J,M)P (A|J,M)P (J |M)P (M)
(7.2)

However, the the causal model represents a specific factorization of the joined proba-
bility functions, namely

p(B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A), (7.3)

which is much easier to handle. For example, if we do not know the conditional
probability functions, we need to run many more experiments to estimate the various
conditions (24 + 23 + 22 + 21 + 20 = 31) instead of the reduced conditions in the
causal model (1 + 1 + 22 + 2 + 2 = 10). It is also easy to use the casual model to do
inference (drawing conclusions), for specific questions. For example, say we want to
know the probability that there was no earthquake or burglary when the alarm rings
and both John and Mary call. This is given by

P (B = f,E = f,A = t, J = t,M = t) =

= P (B = f)P (E = f,)P (A = t|B = f,E = f)P (J = t|A = t)P (M = t|A = t)

= 0.998 ∗ 0.999 ∗ 0.001 ∗ 0.7 ∗ 0.9
= 0.00062

Although we have a casual model where parents variables influence the outcome
of child variables, we can also use a child evidence to infer some possible values of
parent variables. For example, let us calculate the probability that the alarm rings given
that John calls, P (A = t|J = t). For this we should first calculate the probability that
the alarm rings as we need this later. This is given by

P (A = t) = P (A = t|B = t, E = t)P (B = t)P (E = t) + ...

P (A = t|B = t, E = f)P (B = t)P (E = f) + ...

Graphical models94 |

P (A = t|B = f,E = t)P (B = f)P (E = t) + ...

P (A = t|B = f,E = f)P (B = f)P (E = f)

= 0.95 ∗ 0.001 ∗ 0.002 + 0.94 ∗ 0.001 ∗ 0.998 + ...

0.29 ∗ 0.999 ∗ 0.002 + 0.001 ∗ 0.999 ∗ 0.998
= 0.0025

We can then use Bayes’ rule to calculate the required probability,

P (A = t|J = t) =
P (J = t|A = t)P (A = t)

P (J = t|A = t)P (A = t) + P (J = t|A = f)P (A = f)

=
0.90.0025

0.90.0025 + 0.050.9975
= 0.0434

We can similarly apply the rules of probability theory to calculate other quantities, but
these calculations can get cumbersome with larger graphs. It is therefore useful to use
numerical tools to perform such inference. A Matlab toolbox for Bayesian networks
is introduced in the next section.

While inference is an important application of causal models, inferring causality
from data is another area where causal models revolutionize scientific investigations.
Many traditional methods evaluate co-occurrences of events to determine dependen-
cies, such as a correlation analysis. However, such a correlation analysis is usually not
a good indication of causality. Consider the example above. When the alarm rings it
is likely that John and Mary call, but the event that John calls is mutually independent
of the event that Mary calls. Yet, when John calls it is also statistically more likely to
observe the event that Mary calls. Sometimes we might just be interested in knowing
about the likelihood of co-occurrence, for which a correlation analysis can be a good
start, but if we are interested in describing the causes of the observations, then we need
another approach. Some algorithms have been proposed for structural learning, such
as an algorithm called inferred causation (IC), which deduces the most likely causal
structure behind given data is.

7.2 Bayes Net toolbox

An Matlab implementation of various algorithms for inference, parameters estimation
and inferred causation is provided by Kevin Murphy in the Bayes Net toolbox7. We
will demonstrate some of its features on the burglary/earthquake example above.

The first step is to create a graph structure for the DAG We have five nodes. The
nodes are given numbers, but we also use variables with capital letter names to refer
to them. The DAG is then a matrix with entries 1 where directed links exist.
N=5;% number of nodes
B=1; E=2; A=3; J=4; M=5;
dag = zeros(N,N);

7The toolbox can be downloaded at http://code.google.com/p/bnt.

| 95Bayes Net toolbox

dag(B,A)=1;
dag(E,A)=1;
dag(A,[J M])=1;

The nodes represent discrete random variables with two possible state. We only discuss
here discrete random variables, although the toolbox contains methods for continuous
random variables. For the discrete case we have to specify the number of possible
states of each variable, and we can then create the corresponding Bayesian network,
% Make bayesian network
node_sizes=[2 2 2 2 2]; %binary nodes
bnet=mk_bnet(dag,node_sizes); %make bayesian net

The next step is to provide the numbers for the conditional probability distributions,
which are the conditional probability tables for discrete variables. For this we provide
the numbers in a vector according to the following convention. Say we specify the
probabilities for node 3, which is conditionally dependent on nodes 1 and 2. We then
provide the probabilities in the following order:

Node 1 Node 2 P(Node 3=X)
F F F
T F F
F T F
T T F
F F T
T F T
F T T
T T T

For our specific examples, the CPT are thus specified as
bnet.CPD{B} = tabular_CPD(bnet,B,[0.999 0.001]);
bnet.CPD{E} = tabular_CPD(bnet,E,[0.998 0.002]);
bnet.CPD{A} = tabular_CPD(bnet,A,[0.999 0.06 0.71 0.05 0.001 0.94 0.29 0.95]);
bnet.CPD{J} = tabular_CPD(bnet,J,[0.95 0.10 0.05 0.90]);
bnet.CPD{M} = tabular_CPD(bnet,M,[0.99 0.30 0.01 0.70]);

We are now ready to calculate some inference. For this we need to specify a specific in-
ference engine. There are several algorithms implemented, a variety of exact algorithm
as well as approximate procedures in case the complexity of the problem is too large.
Here we use the basic exact inference engine, the junction tree algorithm, which is
based on a message passing system.
engine=jtree_inf_engine(bnet);

While this is an exact inference engine, there are other engines, such as approximate
engines, that might be employed for large graphs when other methods fail.

As an example of an inference we recalculate the example above, that of calculate
the probability that the alarm rings given that John calls, P (A = t|J = t). For this we
have to enter some evidence, namely that J = t, into a cell array and add this to the
inference engine,
evidence=cell(1,N);
evidence{J}=2;

Graphical models96 |

[engine,loglik]=enter_evidence(engine,evidence)

We can then calculate the marginal distribution for a variable, given the evidence as,
marg=marginal_nodes(engine,A)
p=marg.T(2)

It is now very easy to calculate other probabilities.
The Bayesnet toolbox also includes routines to handle some continuous models

such as models with Gaussian nodes. In addition, there are routines to do parameter
estimation, including point estimates, such maximum likelihood estimation, and also
full bayesian priors. Finally, he toolbox includes routines to inferred causation through
structural learning.

Exercise:

In the above example, shown in Figure 7.1, calculate the probability that there was a
burglary, given that John and Marry called.

7.3 Temporal Bayesian networks: Markov Chains and
Bayes filters

In many situations we are interested in how things change over time. For this we
need to build time-dependent causal models, also called dynamic bayesian models
(DBNs). We will discuss here a specific family of such models in which the states at
one time, t, only depend on the random variables at the previous time, t − 1. This
condition is called a Markov condition, and the corresponding models are called
markov chains. A very common situation is captured in the example shown in Figure
7.2. In this example we have three time-dependent random variables called u(t), x(t),
and z(t). We used different grey shades for the nodes to indicate if they are observed
or not. Only u(t) and z(t) are observed, whereas x(t) is an un-observed, hidden or
latent variable. Such Markov chains are called Hidden Markov Models (HMMs).

ut-1

zt-1

xt-1

ut

z t

xt

ut+1

zt+1

xt+1

ut-2

z t-2

xt-2

Fig. 7.2 A hidden markov model (HMM) with time dependent state variable x, motor control u
and sensor readings z.

The HMM shown in figure 7.2 capture the basic operation of a mobile robot in
which the variable u(t) represents the motor command at time t and the variable

| 97Temporal Bayesian networks: Markov Chains and Bayes filters

z(t) represents sensor readings at time t. The motor command is the cause that the
robot goes into a new state x(t). The problem illustrated in the figure is that the new
state of the robot, such as its location or posture, can not be observed directly. In the
following we will specifically discuss robot localization, where we must infer the
possible state from the motor command and sensor reading. We have previously used
a state sheet to ‘measure’ the state (location) of the tribot with the light sensor (see
section 5.5.2). The model above allows us a much more sophisticated guess of the
location by taking not only the current reading into account, but by combining this
information with our previous guess of the location and the knowledge of the motor
command. More specifically, we want to calculate the believe of the state, which is a
probability (density) function over the state space

bel(xt) = p(xt|bel(x0), u1:t, z1:t), (7.4)

give an initial believe and the history of motor command and sensor reading. This
believe can be calculated recursively from the previous believes and the new infor-
mation, which is a form of believe propagation. It is often convenient to break this
process down into calculating a new prediction from the previous believe and the
motor command, and then to add the knowledge provided by the new sensor reading.
To predict of probability of a new state from the previous believes and the current
motor command, we need to marginalize over the previous states, that is, we need to
multiply the previous believe with the probability of the new state, given the previous
state and motor command, and to sum (integrate) over it,

pred(xt) =
1

Nx

�

xt−1

p(xt|ut, xt−1)bel(xt−1), (7.5)

where Nx is the number of states. This prediction can be combined with the sensor
reading to give a new believe,

bel(xt) =
p(zt|xt)pred(xt)�
xt

p(zt|xt)pred(xt)
, (7.6)

where we included the normalization over all possible states to get a number represent-
ing probabilities. This is called Bayes filtering. With a Bayes filter we can calculate
the new believe from the previous believe, the current motor command, and the latest
sensor reading. This is the best we can do with the available knowledge to estimate
the positions of a system. The application of Bayes filtering to a robot localization
is also called Markov localization and is illustrated in Figure 7.3. The limitation in
practice is often the that we have to sum (integrate) over all the possible states, which
might be a very large sum if it has to be done explicitly. In some cases we can do this
analytically, as shown in the next sections.

7.3.1 The Kalman filter

We have, so far, only assumed that our process complies with the Markov condition
in that the new state only depends on the previous state and current motor command.

Graphical models98 |

Fig. 7.3 A illustration of markov localization [from Probabilistic model, Thrun, Burgard, Fox,
MIT press 2006].

In many cases we might have a good estimate of the state at some point with some
variance. We now assume that our believes are Gaussian distributed,

p(xt−1) =
1

(
�
(2π))n

�
(det(Σt−1)

exp(−1

2
(xt−1 − µt−1)

TΣ−1
t−1(xt−1 − µt−1)).

(7.7)
We also consider first the case where the transition probability p(xt|ut,xt−1) is linear
in the previous state and the motor command, up to Gaussian noise �t,

x̄t = Atxt−1 +Btut + �t; �t ∼ N(0,Qt), (7.8)

where At and Bt are time dependent matrices. The gaussian noise �t has thereby
mean zero and covariance Qt. This setting is very convenient since the posterior

| 99Application and generalization: Localisation example

after moving a Gaussian uncertainty in such a linear fashion is again a Gaussian. The
believe after incorporating the movement is hence a Gaussian probability over states
with parameters

µ̄t = Atµt−1 +Btut (7.9)
Σ̄t = AtΣt−1A

T
t +Qt. (7.10)

We now need to take the measurement probability into account, P (zt|x̄t), which we
also assume to be linear in its argument up to a Gaussian noise δt,

zt = Ctx̄t + δt; δt ∼ N(0,Rt). (7.11)

With this measurement update, we can calculate our new state estimate, parameterized
by µt and Sigmat, as

K̄t = Σ̄tC
T
t (CtΣ̄tC

T
t +Rt)

−1 (7.12)
µt = µ̄t +Kt(zt −Ctµ̄t) (7.13)
Σt = (I−KtCt)Σ̄t, (7.14)

where I is the identity matrix.
The basic Kalman filter makes several simplifying assumptions such as Gaussian

believes, Gaussian noise, and linear relations. There are many generalizations of this
method. For example, it is possible to extend the method to non-linear transformations
while still demanding that the posteriors are Gaussian. While this introduces some
errors and is this only an approximate method, this extended Kalman filter (EKF)
is often very useful in practical applications. Also, there are several non-parametric
methods such as particle filters.

7.4 Application and generalization: Localisation example

Include robot example with Karman filter, mention EKF, and show particle filters.

Exercises:

1. A mobile robot is instructed to travel 3 meters along a line in each time step.
The true distance traveled is gaussian distributed around the intended position
with standard deviation of 2 meters; the positions sensors are also unreliable
with Gaussian that has a standard deviation of 4 meters; What is the average
absolute difference between the true position and the estimated position when
using only the sensor information, only the information inherent in the motor
command, and both sources of information?

2. The lego robot is traveling along a line that has dark stripes at various positions.
These distance between the stripes stripes are doubling for each consecutive stipe
(d(i) = 2 ∗ d(i − 1)). Estimate the position of the Lego tribot when traveling
straight ahead if the robot is positioned at a random initial position.

8 General learning machines

The previous models, through the formulation of specific hypothesis functions, have
been designed specifically for each applications. However, much more practical would
be to have more general machines that can learn without making very specific functional
assumptions. But how can we do this? The general idea is to provide a very general
functions with many parameters that will be adjusted through learning. Of course, the
real problem is then to not over-fit the model by using appropriate restrictions and
also to make the learning efficient so that it can be used to large problem size. This
chapter starts with a brief historical introduction to general learning machines and
neural networks. We then discuss support vector machines and more rigorous learning
theories.

8.1 The Perceptron

There was always a strong interest of AI researchers in real intelligence, that is, to
understand the human mind. For example, both Alan Turing and John von Neumann
worked more directly on biological systems in their last years before their early passing,
and human behaviour and the brain have always been of interest to AI researchers. Of
course, we want to understand how the brain is working in its own right, but it is also
a great example of a quite general and successful learning machine.

!

!!

"

##$#!"

! ! "
%
%
!
!

%
!
%
!

%
!
!
!

! "

!!

!"

"

!##$%%

##&##'# ##&##$#! "! "

A. McColloch-Pitts neuron (TLU)

##$#!!

##$#!%

B. Thruth table C. Graphical represenatation

#%

Fig. 8.1 Representation of the boolean OR function with a McCulloch-Pitts neuron (TLU).

A seminal paper, which has greatly influenced the development of early learning
machines, is the 1943 paper by Warren McCulloch and Walter Pitts. In this paper, they
proposed a simple model of a neuron, called the threshold logical unit, now often
called the McCulloch–Pitts neuron. Such a unit is shown in Fig. 8.1A with three input
channels, although it could have an arbitrary number of input channels. Input values
are labeled by x with a subscript for each channel. Each channel has also a weight

| 101The Perceptron

parameter, θi. The McCulloch–Pitts neuron operates in the following way. Each input
value is multiplied with the corresponding weight value, and these weighted values are
then summed. If the weighted summed input is larger than a certain threshold value,
−θ0, then the output is set to one, and zero otherwise, that is,

h(x; θ) =

�
1 if

�n
i=0 θixi = θTx > 0

0 otherwise . (8.1)

Such an operation resembles, to some extend, a neuron in that a neuron is also summing
synaptic inputs and fires (has a spike in its membrane potential) when the membrane
potential reaches a certain level that opens special voltage-gated ion channels. McCul-
loch and Pitts introduced this unit as a simple neuron model, and they argued that such
a unit can perform computational tasks resembling boolean logic. This is demonstrated
in Fig. 8.1 for a threshold unit that implements the Boolean OR function. The symbol
h is used in these lecture notes since the output of this neuron represents the hypoth-
esis that this neuron implements given the parameters θ. Also note that the non-linear
step-function used in this neuron model corresponds to hypothesis for classification.

The next major developments in this area were done by Frank Rosenblatt and his
engineering colleague Charles Wightman (Fig. 8.2), using such elements to build a
machine that Rosenblatt called the perceptron. As can be seen in the figures, they
worked on a machine that can perform letter recognition, and that the machine consisted
of a lot of cables, forming a network of simple, neuron-like elements.

The most important challenge for the team was to find a way how to adjust the
parameters of the model, the connection weights θi, so that the perceptron would
perform a task correctly. The procedure was to provide to the system a number of
examples, let’s say m input data, x(i) and the corresponding desired outputs, y(i). The
procedure they used thus resembles supervised learning. The learning rule they used
is called the perceptron learning rule,

θj := θj + α

�
y
(i) − hθ(xi)

�
x
(i)
j , (8.2)

which is also related to the Widrow-Hoff learning rule, the Adaline rule, and the delta
rule. These learning rules are nearly identical, but are sometimes used in slightly
different contexts It is often called the delta rule because the difference between the
desired and actual output (difference between actual (training) data and hypothesis)
to guide the learning. When multiplying out the difference with the inputs we have
end up with the product of the activity between the inputs and output values for each
synaptic channel minus the same term for the desired output,

∆wij ∝ (yixj − ŷixj), (8.3)

which reinforces the correlation between the input and the desired output and reduces
the correlation between input and the actual output. Such a learning rule is also called
Hebbian after the famous NovaScotian Donald Hebb. Of course, we now view this
learning rule as a special case of a gradient descent rule for a linear hypothesis function.
Although this rule is not ideal for a perceptron with non-linear functions, it turned out
that it still works in same cases since it corresponds to taking a step towards minimizing
MSE, albeit with a wrong gradient.

General learning machines102 |

!"#$%&'()*$+,#--

./#",*)&012/-3#$

Fig. 8.2 Neural Network computers in the late 1950s.

There was a lot of excitement during the 1960s in the AI and psychology community
about such learning system that resemble some brain functions. However, Minsky and
Peppert showed in 1968 that such perceptrons can not represent all possible boolean
functions (sometimes called the XOR problem). While it was known at this time
that this problem could be overcome by a layered structure of such perceptrons (called
multilayer perceptrons), a learning algorithms was not widely known at this time. This
nearly abolished the field of learning machines, and the AI community concentrated
on rule-based systems in the following years.

8.2 Multilayer perceptron (MLP)

The generalization of a delta rule, known as error-backpropagation, was finally intro-
duced and popularized by Rumelhart, Hinton and Williams in 1986, although many
others including Paul Werbos and Sunichi Amari have used it before. This populariza-
tion resulted in the explosion of the field of Artificial Neural Networks.

A multilayer perceptron with a layer of nin input nodes, a layer of nh hidden nodes,
and a layer of nout output nodes, is shown in Figure 8.3. The input layer is merely just
relaying the inputs, while the hidden and output layer do active calculations. Such a
network is thus called a 2-layer network. The term hidden nodes comes from the fact
that these nodes do not have conncetions to the external world such as the input and

| 103Multilayer perceptron (MLP)

! ! !!" # $%&

'

(

"

'

!

!"

$%&

"

"

"

"

"

!"

$%&

$%&

!"

!"

'"
#

$%&

Fig. 8.3 The standard architecture of a feedforward multilayer network with one hidden layer, in
which input values are distributed to all hidden nodes with weighting factors summarized in the
weight matrix wh. The output values of the nodes of the hidden layer are passed to the output
layer, again scaled by the values of the connection strength as specified by the elements in the
weight matrix wout. The parameters shown at the top, nin, nh, and nout, specify the number of
nodes in each layer, respectively.

output nodes. Instead of the step function used in the McCulloch-Pitts model above,
most such networks use a sigmoidal non-linearity,

g(x) = tanh(βx) = 2
1

1 + e−βx
− 1, (8.4)

to allow for continuous values of the nodes. The network is thus a graphical represen-
tation of a nonlinear function of the form

ŷ = g
out(wout

g
h(whx)). (8.5)

It is easy to include more hidden layers in this formula. For example, the operation rule
for a four-layer network with three hidden layers and one output layer can be written
as

ŷ = g
out(wout

g
h3(wh3

g
h2(wh2

g
h1(wh1x)))). (8.6)

Let us discuss a special case of a multilayer mapping network where all the nodes
in all hidden layers have linear activation functions (g(x) = x). Eqn 8.6 then simplifies
to

rout = g
out(woutwh3wh2wh1rin)

= g
out(w̃rin). (8.7)

In the last step we have used the fact that the multiplication of a series of matrices simply
yields another matrix, which we labelled w̃. Eqn 8.7 represents a single-layer network
as discussed before. It is therefore essential to include non-linear activation functions,
at least in the hidden layers, to make possible the advantages of hidden layers that
we are about to discuss. We could also include connections between different hidden

General learning machines104 |

layers, not just between consecutive layers as shown in Fig. 8.3, but the basic layered
structure is sufficient for the following discussions.

Which functions can be approximated by multilayer perceptrons? The answer is,
in principle, any. A multilayer feedforward network is a universal function approx-
imator. This means that, given enough hidden nodes, any mapping functions can be
approximated with arbitrary precision by these networks. The remaining problems are
to know how many hidden nodes we need, and to find the right weight values. Also, the
general approximator characteristics does not tell us if it is better to use more hidden
layers or just to increase the number of nodes in one hidden layer. These are important
concerns for practical engineering applications of those networks. These questions are
related to the bias-variance tradeoff in non-linear regression as already discussed in
section ??.

To train the these networks we consider again minimizing MSE which would be
appropriate for Gaussian noisy data around the mean described by the model. The
learning rule is then given by a gradient descent on this error function. Specifically,
the gradient of the MSE error function with respect to the output weights is given by

∂E

∂wout
ij

=
1

2

∂

∂wout
ij

�

i

(routi − yi)
2

=
1

2

∂

∂wout
ij

�

i

(gout(
�

j

w
out
ij r

h
j)− yi)

2

= g
out�(hh

i)(
�

j

w
out
ij r

h
j − yi)r

h
j

= δ
out
i r

h
j , (8.8)

where we have defined the delta factor

δ
out
i = g

out�(hh
i)(

�

j

w
out
ij r

h
j − yi)

= g
out�(hh

i)(r
out
i − yi). (8.9)

Eqn 8.8 is just the delta rule as before because we have only considered the output
layer. The calculation of the gradients with respect to the weights to the hidden layer
again requires the chain rule as they are more embedded in the error function. Thus
we have to calculate the derivative

∂E

∂wh
ij

=
1

2

∂

∂wh
ij

�

i

(routi − yi)
2

=
1

2

∂

∂wh
ij

�

i

(gout(
�

j

w
out
ij g

h(
�

k

w
h
jkr

in
k))− yi)

2
. (8.10)

After some battle with indices (which can easily be avoided with analytical calculation
programs such as MAPLE or MATHEMATICA), we can write the derivative in a form
similar to that of the derivative of the output layer, namely

∂E

∂wh
ij

= δ
h
i r

in
j , (8.11)

| 105Multilayer perceptron (MLP)

Table 8.1 Summary of error-back-propagation algorithm

Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to the input nodes: r0i := rini = ξini

Propagate input through the network by calculating the rates of
nodes in successive layers l: rli = g(hl

i) = g(
�

j w
l
ijr

l−1
j)

Compute the delta term for the output layer:
δouti = g�(hout

i)(ξouti − routi)
Back-propagate delta terms through the network:

δ
l−1
i = g�(hl−1

i)
�

j w
l
jiδ

l
j

Update weight matrix by adding the term: ∆wl
ij = �δlir

l−1
j

when we define the delta term of the hidden term as

δ
h
i = g

h�(hin
i)

�

k

w
out
ik δ

out
k . (8.12)

The error term δhi is calculated from the error term of the output layer with a formula
that looks similar to the general update formula of the network, except that a signal
is propagating from the output layer to the previous layer. This is the reason that
the algorithm is called the error-back-propagation algorithm. The algorithm is
summarized in Table 8.1.

Such multilayer perceptrons were able to learn nonlinear relations in data and
had some success in application. However, the general problem of overfitting and the
question of optimality, and well as the applicability to large data problems with more
complex functions, has hampered the field since the early successes. This area of
artificial neural networks become now absorbed into the more general are of machine
learning with new methods that have clarified field and have led to more applicable
methods that we will discuss below. We therefore follow in the next sections a more
contemporary path.

Before leaving this area it is useful to point out some more general observations.
Artificial neural networks have certainly been one of the first successful methods
for nonlinear regression, implementing nonlinear hypothesis of the form h(x; θ) =
g(θTx). The corresponding mean square loss function,

L ∝
�
y − g(θTx)

�2
(8.13)

is then also a general nonlinear function of the parameters. Minimizing such a function
is generally difficult. However, we could consider instead hypothesis that are linear in
the parameters, h(x; θ) = θTφ(x;, so that the MSE loss function is quadratic in the
parameters,

L ∝
�
y − θ

T
φ(x)

�2
. (8.14)

The corresponding quadratic optimization problem can be solved much more effi-
ciently. This line of ideas are further developed in support vector machines discussed
next. An interesting and central further issue is how to chose the non-linear function
φ. This will be an important ingredient for nonlinear support vector machines and
unsupervised learning discussed below.

General learning machines106 |

8.3 Support Vector Machines (SVM)

8.3.1 Linear classifiers with large margins

In this section we briefly outline the basic idea behind Support Vector Machines (SVM)
that are currently thought to be the best general purpose supervised classifier algorithm.
SVMs, and the underlying statistical learning theory, has been worked out by Vladimir
Vapnik since the early 1960, but some breakthroughs were also made in the late 1990
with some collaborators like Corinna Cortes, Chris Burges, Alex Smola, and Bernhard
Schölkopf to name but a few, and SVM have since become very popular and hard to
beat. While we outline some of the underlying formulas, we do not derive all the steps
but will try to give some intuition. A more thorough treatment can be found in the
references on the web page. The here we just want to provide the big picture, but need
to show some formulas to highlight some of the discussion.

The basic SVMs are concerned with binary classification. Figure 8.4 shows an
example of two classes, depicted by different symbols, in a two dimensional attribute
space. We distinguish here attributes from features as follows. Attributes are the raw
measurements, where as features can be made up by combining attributes. For example,
the attributes x1 and x2 could be combines in a feature vector (x1, x1x2, x2, x

2
1, x

2
2)

T .
This will become important later, but it is important to introduce the notation here.
Our training set consists again of m data with attribute values x(i) and labels y(i). We
chose here the labels of the two classes as y ∈ {−1, 1}, as this will nicely simplify
some equations.

x

xx
x
x

x
x

x

x

x

x

!

!"

!# !!""#$%

!

!

Fig. 8.4 Illustration of linear support vector classification.

The two classes in the figure 8.4 can be separated by a line, which can be parame-
terized by

w1x1 + w2x2 − b = wTx− b = 0. (8.15)

While the first equation shows the lines equation with its components in two dimen-
sions, the next expression is the same in any dimension. Of course, in three dimension
we would talk about a plane. In general, we will talk about a hyperplane in any dimen-
sions. The particular hyperplane is the dividing or separating hyperplane between the
two classes. We also introduce what the margin γ, which is the perpendicular distance
between the dividing hyperplane and the closest point.

| 107Support Vector Machines (SVM)

The main point to realize now is that the dividing hyperplane that maximizes the
the margin, the so called maximum margin classifier, is the best solution we can find.
Why is that? We should assume that the training data, shown in the figure, are some
unbiased examples of the true underlying density function describing the distribution
of points within each class. It is then likely that new data points, which we want to
classify, are close to the already existing data points. Thus, if we make the separating
hyperplane as far as possible from each point, than it is most likely to not make wrong
classification. Or, with other words, a separating hyperplane like the one shown as
dashed line in the figure, is likely to generalize much worse than the maximum margin
hyperplane. So the maximum margin hyperplane is the best generalizer for binary
classification for the training data.

What is if we can not divide the data with a hyperplane and we have to consider
non-linear separators. Don’t we then run into the same problems as outlined before,
specifically the bias-variance tradeoff? Yes, indeed, this will still be the challenge,
and our aim is really to work on this problem. But before going there it is useful
to formalize the linear separable case in some detail as the representation of the
optimization problem will be a key in applying some tricks later.

Learning a linear maximum margin classifier on labeled data means finding the
parameters (w) and b that maximizes the margin. For this we could computer the
distances of each point from the hyperplane, which is simply a geometric exercise,

γ
(i) = y

(i)

�
(

w

||w||)
Tx(i) +

b

||w||

�
. (8.16)

The vector w/||w|| is the normal vector of the hyperplane, a vector of unit length
perpendicular to the hyperplane. We overall margin we want to maximize is the
distance to the closest point,

γ = min
i

γ
(i)
. (8.17)

By looking at equation 8.21 we see that maximizing γ is equivalent to minimizing
||w||, or, equivalently, of minimizing

min
w,b

1

2
||w||2. (8.18)

More precisely, we want to maximize this margin under the constraint that no training
data lies within the margin,

wTx+ b ≥ 1 for y
(i) = 1 (8.19)

wTx+ b ≤ −1 for y
(i) = −1, (8.20)

which can nicely be combines with our choice of class representation as

y
(i)(wTx+ b) ≤ 1. (8.21)

Thus we have a quadratic minimization problem with linear inequalities as constraint.
Taking a constrain into account can be done with a Lagrange formalism. For this we

General learning machines108 |

simply add the constraints to the main objective function with parameters αi called
Lagrange multipliers,

ŁP (w, b,αi) =
1

2
||w||2 −

m�

i=1

αi[y
(i)(wTx+ b)− 1]. (8.22)

The Lagrange multipliers determine how well the constrain are observed. In the case
of αi = 0, the constrains do not matter. In order conserve the constrains, we should
thus make these values as big as we can. Finding the maximum margin classifier is
given by

p
∗ = min

w,b
max
αi

ŁP (w, b,αi) ≤ p
∗ = max

αi

min
w,b

ŁD(w, b,αi) = d
∗
. (8.23)

In this formula we also added the formula when interchanging the min and max
operations, and the reason for this is the following. It is straight forward to solve the
optimization problem on the left hand side, but we can also solve the related problem
on the right hand side which turns out to be essential when generalizing the method
to nonlinear cases below. Moreover, the equality hold when the optimization function
and the constraints are convex8. So, if we minimize Ł by looking for solutions of the
derivatives ∂Ł

∂w and ∂Ł
∂b , we get

w =
m�

i=1

αiy
(i)x(i) (8.24)

0 =
m�

i=1

αiy
(i) (8.25)

Substituting this into the optimization problem we get

max
αi

�

i

αi −
1

2

�

i,j

y
(i)
y
(y)

αiαjx
(i)Tx(j)

, (8.26)

subject to the constrains

αi ≥ 0 (8.27)
m�

i=1

αiy
(i) = 0. (8.28)

From this optimization problem it turns out that the αi’s of only a few examples,
those ones that are lying on the margin, are the only ones with have αi �= 0. The
corresponding training examples are called support vectors. The actual optimization
can be done with several algorithms. In particular, John Platt developed the sequential
minimal optimization (SMO) algorithm that is very efficient for this optimization
problem. Please note that the optimization problem is convex and can thus be solved
very efficiently without the danger of getting stuck in local minima.

8Under these assumptions there are other conditions that hold, called the Karush-Kuhn-Tucker condi-
tions, that are useful in providing proof in the convergence of these the methods outlined here.

| 109Support Vector Machines (SVM)

Once we found the support vectors with corresponding αi’s, we can calculate (w)
from equation 8.29 and b from a similar equation. Then, if we are given a new input
vector to be classified, this can then be calculated with the hyperplane equation 8.20
as

y =

�
1 if

�m
i=1 αiy

(i)x(i)Tx > 0
−1 otherwise (8.29)

Since this is only a sum over the support vectors, classification becomes very efficient
after training.

8.3.2 Soft margin classifier

So far we only discussed the linear separable case. But how about the case when there
are overlapping classes? It is possible to extend the optimization problem by allowing
some data points to be in the margin while penalizing these points somewhat. We
include therefore some slag variables ξi that reduce the effective margin for each data
point, but we add to the optimization a penalty term that penalizes if the sum of these
slag variables are large,

min
w,b

1

2
||w||2 + C

�

i

ξi, (8.30)

subject to the constrains

y
(i)(wTx+ b) ≥ 1− ξi (8.31)

ξi ≥ 0 (8.32)

The constant C is a free parameter in this algorithm. Making this constant large means
allowing less points to be in the margin. This parameter must be tuned and it is advisable
to at least try to vary this parameter to verify that the results do not dramatically depend
on a initial choice.

8.3.3 Nonlinear Support Vector Machines

We have treated the case of overlapping classes while assuming that the best we can
do is still a linear separation. But what if the underlying problem is separable, f only
with a more complex function. We will now look into the non-linear generalization of
the SVM.

When discussing regression we started with the linear case and then discussed
non-linear extensions such as regressing with polynomial functions. For example, a
linear function in two dimensions (two attribute values) is given by

y = w0 + w1x1 + w2x2, (8.33)

and an example of a non-linear function, that of an polynomial of 3rd order, is given
by

y = w0 + w1x1 + w2x2 + w3x1x2 + w4x
2
1 + w5x

2
2. (8.34)

The first case is a linear regression of a feature vector

General learning machines110 |

x =

�
x1

x2

�
. (8.35)

We can also view the second equation as that of linear regression on a feature vector

x → φ(x) =

x1

x2

x1x2

x2
1

x2
2

, (8.36)

which can be seen as a mapping φ(x) of the original attribute vector. We call this
mapping a feature map. Thus, we can use the above maximum margin classification
method in non-linear cases if we replace all occurrences of the attribute vector x with
the mapped feature vector φ(x). There are only two problems remaining. One is that
we have again the problem of overfitting as we might use too many feature dimensions
and corresponding free parameters wi. The second is also that with an increased
number of dimensions, the evaluation of the equations becomes more computational
intensive. However, there is a great trick to alleviate the later problem in the case when
the methods only rely on dot products, like in the case of the formulation in the dual
problem. In this, the function to be minimized, equation 8.31 with the feature maps,
only depends on the dot products φ(x(i))Tφ(x(j)). Also, when predicting the class
for a new input vector x from equation 8.29 when adding the feature maps, we only
need the resulting values for the dot products φ(x(i))Tφ(x) which can sometimes be
represented as function called Kernel function,

K(x, z) = φ(x)Tφ(z). (8.37)

Instead of actually specifying a feature map, which is often a guess to start, we could
actually specify a Kernel function. For example, let us consider a quadratic feature
map

K(x, z) = (xT z+ c)2. (8.38)

We can then try to write this in the form of equation 8.42 to find the corresponding
feature map. That is

K(x, z) = (xT z)2 + 2cxT z+ c
2 (8.39)

= (
�

i

xizi)
2 + 2c

�

i

xizi + c
2 (8.40)

=
�

j

�

i

(xixj)(zizj) +
�

i

(
�

(2c)xi)(
�
(2c)zi) + cc (8.41)

= φ(x)Tφ(z), (8.42)

with

| 111Support Vector Machines (SVM)

φ(x) =

x1x1

x1x2

...

xnx1

xnx2

...√
2cx1√
2cx2

...

c

, (8.43)

The dimension of this feature vector isO(n2) for n original attributes. Thus, evaluating
the dot product in the mapped feature space is much more time consuming then
calculating the Kernel function which is just the square of the dot product of the original
attribute vector. The dimensionality Kernels with higher polynomials is quickly rising,
making the benefit of the Kernel method even more impressive.

While we have derived the corresponding feature map for a specific Kernel function,
this task is not always easy and not all functions are valid Kernel functions. We have
also to be careful that the Kernel functions still lead to convex optimization problems.
In practice, only a small number of Kernel functions is used. Besides the polynomial
Kernel mention before, one of the most popular is the Gaussian Kernel,

K(x, z) = exp− ||x− z||2

2γ2
, (8.44)

which corresponds to an infinitely large feature map.
As mentioned above, a large feature space corresponds to a complex model that

is likely to be prone to overfitting. We must therefore finally look into this problem.
The key insight here is that we are already minimizing the sum of the components
of the parameters, or more precisely the square of the norm ||w||2. This term can
be viewed as regularization which favours a smooth decision hyperplane. Moreover,
we have discussed two extremes in classifying complicated data, one was to use
Kernel functions to create high-dimensional non-linear mappings and hence have a
high-dimensional separating hyperplane, the other method was to consider a low-
dimensional separating hyperplane and interpret the data as overlapping. The last
method includes a parameter C that can be used to tune the number of data points
that we allow to be within the margin. Thus, we can combine these two approaches to
classify non-linear data with overlaps where the soft margins will in addition allow us
to favour more smooth dividing hyperplanes.

8.3.4 Regularization and parameter tuning

In practice we have to consider several free parameters when applying support vector
machines. First, we have to decide which Kernel function to use. Most packages
have a number of choices implemented. We will use for the following discussion the
Gaussian Kernel function with width parameter γ. Setting a small value for γ and
allowing for a large number of support vectors (small C), corresponds to a complex
model. In contrast, larger width values and regularization constant C will increase the
stiffness of the model and lower the complexity. In practice we have to tune these

General learning machines112 |

parameters to get good results. To do this we need to use some form of validation
set, as discussed in section 5.6, and k-times cross validation is often implemented
in the software packages. An example of the SVM performance (accuracy) on some
examples (Iris Data set from the UCI repository; From Broadman and Trappenberg,
2006) is shown in figure 8.5 for several values of γ and C. It is often typical that there
is a large area where the SVM works well and has only little variations in terms of
performance. This robustness has helped to make SVMs practical methods that often
outperform other methods. However, there is often also an abrupt onset of the region
where the SVM fails, and some parameter tuning is hence required. While just trying
a few settings might be sufficient, some more systematic methods such as grid search
or simulated annealing also work well.

Fig. 8.5 Illustration of SVM accuracy for different values of paraneters C abd γ.

8.3.5 Statistical learning theory and VC dimension
SVMs are good and practical classification algorithms for several reasons, including
the advantage of being convex optimization problem that than can be solved with
quadratic programming, have the advantage of being able to utilize the Kernel trick,
have a compact representation of the decision hyperplane with support vectors, and
turn out to be fairly robust with respect to the hyper parameters. However, in order to
be good learners, they need to moderate the variance-bias tradeoff dicussed in section
5.6. A great theoretical contributions of Vapnik and colleagues was the embedding
of supervised learning into statistical learning theory and to derive some bounds that
make statements on the average ability to learn form data. We outline here briefly the
ideas and state some of the results. We discuss this issue here in the context of binary
classification, although similar observations can be made in the case of multiclass
classification and regression.

We start again by stating our objective, which is to find a hypothesis which min-
imized the generalization error. To state this a bit more differentiated and to use the
nomenclature common in these discussions, we call the error function here the risk
function R. In particular, the expected risk for a binary classification problem is the
probability of misclassification,

R(h) = P (h(x) �= y) (8.45)

| 113Support Vector Machines (SVM)

Of course, we generally do not know this density function, though we need to approx-
imate this with our validation data. We assume thereby again that the samples are iid
(independent and identical distributed) data, and can then estimate what is called the
empirical risk,

R̂(h) =
1

m

m�

i=1

11(h(x(i); θ) = y
(i)). (8.46)

We use here again m as the number of examples, but note that this is here the number
of examples in the validations set, which is the number of all training data minus the
ones used for training. Also, we will discuss this empirical risk further, but note that it
is better to use the regularized version that incorporates a smoothness constrain such
as

R̂rmreg(h) =
1

m

�

i

11(h(x(i); θ) = y
(i))− λ||w||2 (8.47)

in the case of SVM, where λ is a regularization constant. Thus, wherever R̂(h) is used
in the following, we can replace this with R̂rmreg(h). Empirical risk minimization
is the process of finding the hypothesis ĥ that minimizes the empirical risk,

ĥ = argmin
h

R̂(h). (8.48)

The empirical risk is the MLE of the mean of a Bernoulli-distributed random variable
with true mean R(h). Thus, the empirical risk is itself a random variable for each
possible hypothesis h. Let us first assume that we have k possible hypothesis hi. We
now draw on a theorem by Hoeffding called the Hoeffding inequality that provides
and upper bound for the sum of random numbers to its mean,

P (|R(hi)− R̂(hi)| > γ) ≤ 2 exp(−2γ2
m). (8.49)

This formula states that there is a certain probability that we make an error larger than
γ for each hypothesis of the empirical risk compared to the expected risk, although
the good news is that this probability is bounded and that the bound itself becomes
exponentially smaller with the number of validation examples. This is already an
interesting results, but we now want to know the probability that some, out of all
possible hypothesis, are less than γ. Using the fact that the probability of the union of
several events is always less or equal to the sum of the probabilities, one can show that
with probability 1− δ the error of a hypothesis is bounded by

|R(h)− R̂(h)| ≤
�

1

2m
log

2k

δ
. (8.50)

This is a great results since it shows how the error of using an estimate the risk, the
empirical risk that we can evaluate from the validation data, is getting smaller with
training examples and with the number of possible hypothesis.

While the error scales only with the log of the number of possible hypothesis, the
values goes still to infinite when the number of possible hypothesis goes to infinite,
which much more resembles the situation when we have parameterized hypothesis.
However, Vapnik was able to show the following generalization in the infinite case,

General learning machines114 |

x

x

x

Fig. 8.6 Illustration of VC dimensions for the class of linear functions in two dimensions.

which is that given a hypothesis space with Vapnic-Chervonencis dimension VC({h}),
then, with probability 1 − δ, the error of the empirical risk compared to the expected
risk (true generalization error) is

|R(h)− R̂(h)| ≤ O

��
V C

m
log

m

V C
+

1

m
log

1

δ

�
. (8.51)

The VC dimensions is thereby a measure of how many points can be divided by a
member of the hypothesis set for all possible label combinations of the point. For
example, consider three arbitrary points in two dimensions as shown in figure 8.6, and
let us consider the hypothesis class of all possible lines in two dimensions. I can always
divide the three points under any class membership condition, of which two examples
are also shown in the figure. In contrast, it is possible to easily find examples with four
points that can not be divided by a line in two dimensions. The VC dimension of lines
in two dimensions is hence V C = 3.9

8.4 SV-Regression and implementation

8.4.1 Support Vector Regression

While we have mainly discussed classification in the last few sections, it is time to
consider the more general case of regression and to connect these methods to the
general principle of maximum likelihood estimation outlined in the previous chapter.
It is again easy to illustrate the method for the linear case before generalizing it to the
non-linear case similar to the strategy followed for SVMs.

We have already mentioned in section 5.2 the �-insensitive error function which
does not count deviations of data from the hypothesis that are less than � form the
hypothesis, This is illustrated in figure 8.7. The corresponding optimization problem
is

min
w,b

1

2
||w||2 + C

�

i

(ξi + ξ
∗), (8.52)

subject to the constrains

y
(i) −wTx− b ≤ ξi (8.53)

9Three points of different classes can not be separated by a single line, but these are singular points that
are not effective in the definition of VC dimension.

| 115SV-Regression and implementation

x

x

x

x

x

x
x

x

x
x

x

!

!"

!# $%$

&%

Fig. 8.7 Illustration of support vector regression and the �-insensitive cost function.

y
(i) −wTx− b ≥ ξ

∗
i (8.54)

ξi, ξ
∗
i ≥ 0 (8.55)

The dual formulations does again only depend on scalar products between the training
examples, and the regression line can be also be expressed by a scalar product between
the support vectors and the prediction vector,

h(x;αi,α
∗
i) =

m�

i=1

(αi − α
∗
i)x

T
i x. (8.56)

This, we can again use Kernels to generalize the method to non-linear cases.

8.4.2 Implementation

There are several SVM implementations available, and SVMs are finally becom-
ing a standard component of data mining tools. We will use the implementation
called LIBSVM which was written by Chih-Chung Chang and Chih-Jen Lin and
has interfaces to many computer languages including Matlab. There are basically
two functions that you need to use, namely model=svmtrain(y,x,options) and
svmpredict(y,x,model,options). The vectors x and y are the training data or the
data to be tested. svmtrain uses k-fold cross validation to train and evaluate the SVM
and returns the trained machine in the structure model. The function svmpredict
uses this model to evaluate the new data points. Below is a list of options that shows
the implemented SVM variants. We have mainly discussed C-SVC for the basic soft
support vector classification, and epsilonSVR for support vector regression.

-s svm_type : set type of SVM (default 0)
0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR
-t kernel_type : set type of kernel function (default 2)
0 -- linear: u’*v
1 -- polynomial: (gamma*u’*v + coef0)^degree

General learning machines116 |

2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u’*v + coef0)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)

The k in the -g option means the number of attributes in the input data.

8.5 Supervised Line-following

8.5.1 Objective

The objective of this experiment is to investigate Supervised Learning through teaching
a robot how to follow a line using a Support Vector Machine (SVM).

8.5.2 Setup

• Mount light sensor on front of NXT, plugged into Port 1
• Use a piece of dark tape (i.e. electrical tape) to mark a track on a flat surface.

Make sure the tape and the surface are coloured differently enough that the light
sensor returns reasonably different values between the two surfaces.

• This program requires a MATLAB extension that can use Support Vector Ma-
chines. Download:

| 117Supervised Line-following

8.5.3 Program

Data collection requires the user to manually move the wheels of the NXT. When the
training begins, start the NXT so the light sensor’s beam is either on the tape or the
surface. Zig zag the NXT so the beam travels on and off the tape by moving either
the right or the left wheel, one at a time. Record the positions of the left and right
wheels, as well as the light sensor’s reading during frequent intervals. It is important to
make sure the wheel not in motion stays as stationary as possible to obtain the optimal
training set of data.
After data collection, find the difference between the right and the left wheel posi-
tions for each time sample taken, and use the SVM to create a model between these
differences and the light sensor readings. For instance:
model = svmtrain(delta,lightReading,’-s 8 -g 0 -b 1 -e 0.1 -q’);

To implement the model, place the NXT on the line and use SVMPredict to input a
light sensor reading and drive the robot left or right depending on the returned value
of the SVMPredict.

lightVal=GetLight(SENSOR_1);
if svmpredict(0,lightVal,model,’0’)>0

left.Stop();
right.SendToNXT();

else
right.Stop();
left.SendToNXT();

end

